
BeagleBone Cookbook

BeagleBoard.org Foundation
Oct 29, 2025

Table of contents

1 Basics 3
1.1 Picking Your Beagle . 3

1.1.1 Problem . 3
1.1.2 Solution . 3

1.2 Getting Started, Out of the Box . 3
1.2.1 Problem . 3
1.2.2 Solution . 3
1.2.3 Discussion . 6

1.3 Verifying You Have the Latest Version of the OS on Your Bone 7
1.3.1 Problem . 7
1.3.2 Solution . 7

1.4 Running the Python Examples . 7
1.4.1 Problem . 7
1.4.2 Solution . 7

1.5 Cloning the Cookbook Repository . 7
1.5.1 Problem . 7
1.5.2 Solution . 7

1.6 Wiring a Breadboard . 8
1.6.1 Problem . 8
1.6.2 Solution . 8
1.6.3 Breadboard wired to BeagleBone Black . 8

1.7 Editing Code Using Visual Studio Code . 9
1.7.1 Problem . 9
1.7.2 Solution . 9

1.8 Running Python and JavaScript Applications from Visual Studio Code 9
1.8.1 Problem . 9
1.8.2 Solution . 9
1.8.3 Finding the Latest Version of the OS for Your Bone . 9

1.9 Running the Latest Version of the OS on Your Bone . 13
1.9.1 Problem . 13
1.9.2 Solution . 13

1.10 Updating the OS on Your Bone . 13
1.10.1 Problem . 13
1.10.2 Solution . 13
1.10.3 Discussion . 14

1.11 Backing Up the Onboard Flash . 14
1.11.1 Problem . 14
1.11.2 Solution . 14

1.12 Updating the Onboard Flash . 14
1.12.1 Problem . 14
1.12.2 Solution . 15

2 Sensors 17
2.1 Choosing a Method to Connect Your Sensor . 17

2.1.1 Problem . 17
2.1.2 Solution . 19

2.2 Input and Run a Python or JavaScript Application for Talking to Sensors 19

i

2.2.1 Problem . 20
2.2.2 Solution . 20

2.3 Reading the Status of a Pushbutton or Magnetic Switch (Passive On/Off Sensor) 23
2.3.1 Problem . 23
2.3.2 Solution . 23

2.4 Mapping Header Numbers to gpio Numbers . 25
2.4.1 Problem . 25
2.4.2 Solution . 25

2.5 Reading a Position, Light, or Force Sensor (Variable Resistance Sensor) 26
2.5.1 Problem . 26
2.5.2 Solution . 26

2.6 Reading a Distance Sensor (Analog or Variable Voltage Sensor) 29
2.6.1 Problem . 30
2.6.2 Solution . 30

2.7 Reading a Distance Sensor (Variable Pulse Width Sensor) . 32
2.7.1 Problem . 32
2.7.2 Solution . 32

2.8 Accurately Reading the Position of a Motor or Dial . 34
2.8.1 Problem . 34
2.8.2 Solution . 34
2.8.3 See Also . 37

2.9 Acquiring Data by Using a Smart Sensor over a Serial Connection 38
2.9.1 Problem . 38
2.9.2 Solution . 38

2.10 Measuring a Temperature . 39
2.10.1 Problem . 39
2.10.2 Solution . 39

2.11 I2C tools . 42
2.12 Reading the temperature via the kernel driver . 42
2.13 Reading i2c device directly . 45
2.14 Reading Temperature via a Dallas 1-Wire Device . 45

2.14.1 Problem . 45
2.14.2 Solution . 45

2.15 Playing and Recording Audio . 48
2.15.1 Problem . 48
2.15.2 Solution . 48

2.16 Listing the ALSA audio output and input devices on the Bone 49
2.16.1 Discussion . 49

3 Displays and Other Outputs 51
3.1 Toggling an Onboard LED . 52

3.1.1 Problem . 52
3.1.2 Solution . 52

3.2 Toggling an External LED . 54
3.2.1 Problem . 54
3.2.2 Solution . 54

3.3 Toggling a High-Voltage External Device . 56
3.3.1 Problem . 56
3.3.2 Solution . 56

3.4 Fading an External LED . 56
3.4.1 Problem . 56
3.4.2 Solution . 57

3.5 Writing to an LED Matrix . 60
3.5.1 Problem . 60
3.5.2 Solution . 60

3.6 Using I2C command-line tools to discover the address of the display 60
3.7 LED matrix display (matrixLEDi2c.py) . 61
3.8 Driving a 5 V Device . 62

ii

3.8.1 Problem . 62
3.8.2 Solution . 63

3.9 Writing to a NeoPixel LED String Using the PRUs . 63
3.9.1 Problem . 63
3.9.2 Solution . 63

3.10 Writing to a NeoPixel LED String Using LEDscape . 64
3.11 Making Your Bone Speak . 64

3.11.1 Problem . 64
3.11.2 Solution . 64

4 Motors 67
4.1 Controlling a Servo Motor . 67

4.1.1 Problem . 67
4.1.2 Solution . 68

4.2 Controlling a Servo with an Rotary Encoder . 72
4.2.1 Problem . 72
4.2.2 Solution . 72

4.3 Controlling the Speed of a DC Motor . 74
4.3.1 Problem . 74
4.3.2 Solution . 74

4.4 See Also . 77
4.5 Controlling the Speed and Direction of a DC Motor . 77

4.5.1 Problem . 77
4.5.2 Solution . 77

4.6 Driving a Bipolar Stepper Motor . 79
4.6.1 Problem . 79
4.6.2 Solution . 79

4.7 Driving a Unipolar Stepper Motor . 81
4.7.1 Problem . 82
4.7.2 Solution . 82

5 Beyond the Basics 85
5.1 Running Your Bone Standalone . 85

5.1.1 Problem . 85
5.1.2 Solution . 85

5.2 Selecting an OS for Your Development Host Computer . 87
5.2.1 Problem . 87
5.2.2 Solution . 87

5.3 Getting to the Command Shell via SSH . 87
5.3.1 Problem . 87
5.3.2 Solution . 88
5.3.3 Default password . 88

5.4 Removing the Message of the Day . 88
5.4.1 Problem . 88
5.4.2 Solution . 88

5.5 Getting to the Command Shell via the Virtual Serial Port . 89
5.5.1 Problem . 89
5.5.2 Solution . 89

5.6 Viewing and Debugging the Kernel and u-boot Messages at Boot Time 89
5.6.1 Problem . 89
5.6.2 Solution . 90

5.7 Verifying You Have the Latest Version of the OS on Your Bone from the Shell 94
5.7.1 Problem . 94
5.7.2 Solution . 94

5.8 Controlling the Bone Remotely with a VNC . 94
5.8.1 Problem . 95
5.8.2 Solution . 95

5.9 Learning Typical GNU/Linux Commands . 96
5.9.1 Problem . 96

iii

5.9.2 Solution . 96
5.10 Editing a Text File from the GNU/Linux Command Shell . 97

5.10.1 Problem . 97
5.10.2 Solution . 97

5.11 Establishing an Ethernet-Based Internet Connection . 97
5.11.1 Problem . 97
5.11.2 Solution . 97

5.12 Establishing a WiFi-Based Internet Connection . 101
5.12.1 Problem . 101
5.12.2 Solution . 102

5.13 Sharing the Host’s Internet Connection over USB . 105
5.13.1 Problem . 105
5.13.2 Solution . 105

5.14 Setting Up a Firewall . 108
5.14.1 Problem . 108
5.14.2 Solution . 108

5.15 Installing Additional Packages from the Debian Package Feed 109
5.15.1 Problem . 109
5.15.2 Solution . 110

5.16 Removing Packages Installed with apt . 110
5.16.1 Problem . 110
5.16.2 Solution . 110

5.17 Copying Files Between the Onboard Flash and the MicroSD Card 111
5.17.1 Problem . 111
5.17.2 Solution . 111

5.18 Freeing Space on the Onboard Flash or MicroSD Card . 112
5.18.1 Problem . 112
5.18.2 Solution . 112

5.19 Using C to Interact with the Physical World . 114
5.19.1 Problem . 114
5.19.2 Solution . 114

6 Internet of Things 117
6.1 Accessing Your Host Computer’s Files on the Bone . 117

6.1.1 Problem . 117
6.1.2 Solution . 117

6.2 Serving Web Pages from the Bone . 118
6.2.1 Problem . 118
6.2.2 Solution . 118

6.3 Interacting with the Bone via a Web Browser . 118
6.3.1 Problem . 118
6.3.2 Solution . 120

6.4 First Flask - hello, world . 120
6.5 Adding a template . 120
6.6 Displaying GPIO Status in a Web Browser - reading a button . 124

6.6.1 Problem . 124
6.6.2 Solution . 124

6.7 Controlling GPIOs . 125
6.7.1 Problem . 125
6.7.2 Solution . 125

6.8 Plotting Data . 128
6.8.1 Problem . 128
6.8.2 Solution . 128

6.9 Sending an Email . 134
6.9.1 Problem . 136
6.9.2 Solution . 136

6.10 Sending an SMS Message . 137
6.10.1 Problem . 137

iv

6.10.2 Solution . 137
6.11 Displaying the Current Weather Conditions . 138

6.11.1 Problem . 138
6.11.2 Solution . 138

6.12 Sending and Receiving Tweets . 140
6.12.1 Problem . 140
6.12.2 Solution . 140

6.13 Creating a Project and App . 140
6.14 Creating a tweet . 140
6.15 Deleting a tweet . 142
6.16 Wiring the IoT with Node-RED . 144

6.16.1 Problem . 144
6.16.2 Solution . 145

6.17 Starting Node-RED . 145
6.18 Building a Node-RED Flow . 145
6.19 Adding an LED Toggle . 146
6.20 Communicating over a Serial Connection to an Arduino or LaunchPad 152

6.20.1 Problem . 152
6.20.2 Solution . 152
6.20.3 Discussion . 157

7 The Kernel 159
7.1 Updating the Kernel . 159

7.1.1 Problem . 159
7.1.2 Solution . 159

7.2 Building and Installing Kernel Modules . 161
7.2.1 Problem . 161
7.2.2 Solution . 161

7.3 Compiling the Kernel . 163
7.3.1 Problem . 163
7.3.2 Solution . 163

7.4 Downloading and Compiling the Kernel . 163
7.5 Installing the Kernel on the Bone . 164
7.6 Installin a Cross Compiler . 166

7.6.1 Problem . 166
7.6.2 Solution . 166

7.7 Setting Up Variables . 167
7.8 Applying Patches . 167

7.8.1 Problem . 167
7.8.2 Solution . 167

7.9 Creating Your Own Patch File . 169
7.9.1 Problem . 169
7.9.2 Solution . 169

8 Real-Time I/O 171
8.1 I/O with Python and JavaScript . 171

8.1.1 Problem . 171
8.1.2 Solution . 171

8.2 I/O with devmem2 . 175
8.2.1 Problem . 176
8.2.2 Solution . 176

8.3 I/O with C and mmap() . 177
8.3.1 Problem . 177
8.3.2 Solution . 177

8.4 Tighter Delay Bounds with the PREEMPT_RT Kernel . 180
8.4.1 Problem . 180
8.4.2 Solution . 180

8.5 Cyclictest . 181
8.6 I/O with simpPRU . 184

v

8.6.1 Problem . 184
8.6.2 Solution . 184

8.7 Background . 184

9 Capes 185
9.1 Connecting Multiple Capes . 185

9.1.1 Problem . 185
9.1.2 Solution . 185

9.2 LCD Backside . 187
9.3 Audio cape pins . 187
9.4 Moving from a Breadboard to a Protoboard . 189

9.4.1 Problem . 189
9.4.2 Solution . 189

9.5 Creating a Prototype Schematic . 190
9.5.1 Problem . 190
9.5.2 Solution . 190

9.6 Verifying Your Cape Design . 190
9.6.1 Problem . 190
9.6.2 Solution . 193

9.7 Testing the quickBot motors interface (quickBot_motor_test.js) 193
9.8 Laying Out Your Cape PCB . 198

9.8.1 Problem . 198
9.8.2 Solution . 198

9.9 Customizing the Board Outline . 199
9.10 Fritzing tips . 199
9.11 PCB Design Alternatives . 204

9.11.1 EAGLE . 204
9.11.2 DesignSpark PCB . 207
9.11.3 Upverter . 207
9.11.4 Kicad . 208

9.12 Migrating a Fritzing Schematic to Another Tool . 208
9.12.1 Problem . 208
9.12.2 Solution . 208

9.13 Producing a Prototype . 210
9.13.1 Problem . 210
9.13.2 Solution . 210

9.14 Creating Contents for Your Cape Configuration EEPROM . 214
9.14.1 Problem . 214
9.14.2 Solution . 214

9.15 Putting Your Cape Design into Production . 215
9.15.1 Problem . 215
9.15.2 Solution . 215

10Parts and Suppliers 217
10.1 Prototyping Equipment . 217
10.2 Resistors . 218
10.3 Transistors and Diodes . 218
10.4 Integrated Circuits . 218
10.5 Opto-Electronics . 219
10.6 Capes . 219
10.7 Miscellaneous . 219

11Misc 221
11.1 BeagleConnect Freedom . 221

11.1.1 Useful Links . 222
11.1.2 micropython Examples . 222

11.2 Setting up shortcuts to make life easier . 223
11.3 Setting up a root login . 224
11.4 Wireshark . 225

vi

11.4.1 Running Wireshark on the Beagle . 225
11.4.2 Running Wireshark on the host . 226
11.4.3 Sharking the wpan radio . 227

11.5 Find what UU is in i2cdetect . 227
11.5.1 Problem . 228
11.5.2 Solution . 228

11.6 Converting a tmp117 to a tmp114 . 228
11.6.1 Problem . 228
11.6.2 Solution . 228

11.7 Documenting with Sphinx . 237
11.7.1 Problem . 237
11.7.2 Solution . 237

11.8 Running Sparkfun’s qwiic Python Examples . 238
11.8.1 Qwiic Alphanumeric display . 239

11.9 Controlling LEDs by Using SYSFS Entries . 239
11.9.1 Problem . 239
11.9.2 Solution . 239

11.10Controlling GPIOs by Using SYSFS Entries . 240
11.10.1Problem . 240
11.10.2Solution . 240

11.11Reading a GPIO Pin via sysfs . 240
11.12Writing a GPIO Pin via sysfs . 241
11.13The Play’s Boot Sequence . 242

11.13.1Booting for the User . 242
11.13.2Booting for the Developer . 242
11.13.3Boot Flow . 244
11.13.4Source Code . 245

11.14Home Assistant . 245
11.14.1mqtt . 245

vii

viii

BeagleBone Cookbook

Contributors

• Author: Mark A. Yoder

• Book revision: v2.1 beta

A cookbook for programming Beagles

Table of contents 1

mailto:Mark.A.Yoder@Rose-Hulman.edu

BeagleBone Cookbook

2 Table of contents

Chapter 1

Basics

When you buy BeagleBone Black, pretty much everything you need to get going comes with it. You can just
plug it into the USB of a host computer, and it works. The goal of this chapter is to show what you can do with
your Bone, right out of the box. It has enough information to carry through the next three chapters on sensors
(Sensors), displays (Displays and Other Outputs), and motors (Motors).

1.1 Picking Your Beagle

1.1.1 Problem

There are many different BeagleBoards. How do you pick which one to use?

1.1.2 Solution

Check out the current list of boards: boards

1.2 Getting Started, Out of the Box

1.2.1 Problem

You just got your Bone, and you want to know what to do with it.

1.2.2 Solution

Many of the Beagles (beagley-all-home, beagleplay-home, bbai64-home, bbai-home, beaglev-ahead-home and
beaglev-fire-home) have their own detailed Quick start guide. Here we present general instructions that work
for all Beagles. Fortunately, you have all you need to get running: your Bone and a USB cable. Plug the USB
cable into your host computer (Mac, Windows, or Linux) and plug the mini-USB connector side into the USB
connector near the Ethernet connector on the Bone, as shown in Plugging BeagleBone Black into a USB port.

The four blue USER LEDs will begin to blink, and in 10 or 15 seconds, you’ll see a new USB drive appear on
your host computer. The Bone appears as a USB drive shows how it will appear on a Windows host, and Linux
and Mac hosts will look similar. The Bone acting like a USB drive and the files you see are located on the Bone.

Browse to http://192.168.7.2:3000 from your host computer (Visual Studio Code). If the page is not found, run
the following:

3

http://192.168.7.2:3000

BeagleBone Cookbook

Fig. 1.1: Plugging BeagleBone Black into a USB port

4 Chapter 1. Basics

BeagleBone Cookbook

Fig. 1.2: The Bone appears as a USB drive

1.2. Getting Started, Out of the Box 5

BeagleBone Cookbook

bone$ sudo systemctl start bb-code-server.service

Wait a minute and try the URL again.

Fig. 1.3: Visual Studio Code

Here, you’ll find Visual Studio Code, a web-based integrated development environment (IDE) that lets you edit
and run code on your Bone! See Editing Code Using Visual Studio Code for more details.

Warning:

Make sure you turn off your Bone properly. It’s best to run the halt command:

bone$ sudo halt

The system is going down for system halt NOW! (pts/0)

This will ensure that the Bone shuts down correctly. If you just pull the power, it is possible that open files
would not close properly and might become corrupt.

1.2.3 Discussion

The rest of this book goes into the details behind this quick out-of-the-box demo. Explore your Bone and then
start exploring the book.

6 Chapter 1. Basics

BeagleBone Cookbook

1.3 Verifying You Have the Latest Version of the OS on Your Bone

1.3.1 Problem

You just got BeagleBone Black, and you want to know which version of the operating system it’s running.

1.3.2 Solution

This book uses Debian, the Linux distribution that currently ships on the Bone. However this book is based on
a newer version (BeagleBoard.org Debian Bullseye IoT Image 2023-06-03) than what is shipping at the time of
this writing. You can see which version your Bone is running by following the instructions in Getting Started,
Out of the Box to log into the Bone. Then run:

bone$ cat /etc/dogtag
BeagleBoard.org Debian Bookworm Minimal Image 2024-09-11

I’m running the 2024-09-11 version.

1.4 Running the Python Examples

1.4.1 Problem

You’d like to learn Python to interact with the Bone to perform physical computing tasks without first learning
Linux.

Note: There are many JavaScript examples too, but they may not be as up to date as the Python examples.

1.4.2 Solution

Plug your board into the USB of your host computer and browse to http://192.168.7.2:3000 using Google
Chrome or Firefox (as shown in Getting Started, Out of the Box). In the left column, click on examples, then
BeagleBone and then Black. Several sample scripts will appear. Go and explore them.

Tip: Explore the various demonstrations of Python and JavaScript. These are what come with the Bone. In
Cloning the Cookbook Repository you see how to load the examples for the Cookbook.

1.5 Cloning the Cookbook Repository

1.5.1 Problem

You want to run the Cookbook examples.

1.5.2 Solution

Connect your Bone to the Internet and log into it. From the command line run:

1.3. Verifying You Have the Latest Version of the OS on Your Bone 7

https://www.debian.org
http://192.168.7.2:3000

BeagleBone Cookbook

bone$ git clone https://git.beagleboard.org/beagleboard/beaglebone-cookbook-
↪→code
bone$ cd beaglebone-cookbook-code
bone$ ls

You can look around from the command line, or explore from Visual Sudio Code. If you are using VSC, go to the
File menu and select Open Folder … and select beaglebone-cookbook-code. Then explore.

1.6 Wiring a Breadboard

1.6.1 Problem

You would like to use a breadboard to wire things to the Bone.

1.6.2 Solution

Many of the projects in this book involve interfacing things to the Bone. Some plug in directly, like the USB
port. Others need to be wired. If it’s simple, you might be able to plug the wires directly into the P8 or P9
headers. Nevertheless, many require a breadboard for the fastest and simplest wiring.

To make this recipe, you will need:

• Breadboard and jumper wires

The Breadboard wired to BeagleBone Black shows a breadboard wired to the Bone. All the diagrams in this
book assume that the ground pin (P9_1 on the Bone) is wired to the negative rail and 3.3 V (P9_3) is wired to
the positive rail.

1.6.3 Breadboard wired to BeagleBone Black

Fig. 1.4: Breadboard wired to BeagleBone Black

8 Chapter 1. Basics

BeagleBone Cookbook

1.7 Editing Code Using Visual Studio Code

1.7.1 Problem

You want to edit and debug files on the Bone.

1.7.2 Solution

Plug your Bone into a host computer via the USB cable. Open a browser (either Google Chrome or FireFox will
work) on your host computer (as shown in Getting Started, Out of the Box). After the Bone has booted up,
browse to http://192.168.7.2:3000 on your host. You will see something like Visual Studio Code.

Click the examples folder on the left and then click BeagleBoard and then Black, finally double-clickseqLEDs.
py. You can now edit the file.

Note: If you edit lines 33 and 37 of the seqLEDs.py file (time.sleep(0.25)), changing 0.25 to 0.1, the LEDs
next to the Ethernet port on your Bone will flash roughly twice as fast.

1.8 Running Python and JavaScript Applications from Visual Studio
Code

1.8.1 Problem

You have a file edited in VS Code, and you want to run it.

1.8.2 Solution

VS Code has a bash command window built in at the bottom of the window. If it’s not there, hit Ctrl-Shift-P and
then type terminal create new then hit Enter. The terminal will appear at the bottom of the screen. You can
run your code from this window. To do so, add #!/usr/bin/env python at the top of the file that you
want to run and save.

Tip: If you are running JavaScript, replace the word python in the line with node.

At the bottom of the VS Code window are a series of tabs (Visual Studio Code showing bash terminal). Click
the TERMINAL tab. Here, you have a command prompt.

Change to the directory that contains your file, make it executable, and then run it:

bone$ cd ~/examples/BeagleBone/Black/
bone$./seqLEDs.py

The cd is the change directory command. After you cd, you are in a new directory. Finally, ./seqLEDs.py instructs
the python script to run. You will need to press ^C (Ctrl-C) to stop your program.

1.8.3 Finding the Latest Version of the OS for Your Bone

Problem

You want to find out the latest version of Debian that is available for your Bone.

1.7. Editing Code Using Visual Studio Code 9

http://192.168.7.2:3000

BeagleBone Cookbook

Fig. 1.5: Visual Studio Code showing bash terminal

10 Chapter 1. Basics

BeagleBone Cookbook

Solution

bb-imager

The easiest way to see what the current images are and update your SD card is to use bb-imager. beagley-
ai-bb-imager gives details on how to us it.

forum

Another way to see the available images is to visit the beagleboard forum.

On your host computer, open a browser and go to https://forum.beagleboard.org/tag/latest-images This shows
you a list of dates of the most recent Debian images (Latest Debian images).

Todo: Update for 2023-06-03

Fig. 1.6: Latest Debian images

At the time of writing, we are using the Bullseye image. Click on its link. Scrolling up you’ll find Latest Debian
images. There are three types of snapshots, Minimal, IoT and Xfce Desktop. IoT is the one we are running.

These are the images you want to use if you are flashing a Rev C BeagleBone Black onboard flash, or flashing
a 4 GB or bigger miscroSD card. The image beginning with am335x-debian-11.3-iot- is used for the non-AI
boards. The one beginning with am57xx-debian- is for programming the Beagle AI’s.

1.8. Running Python and JavaScript Applications from Visual Studio Code 11

https://forum.beagleboard.org/tag/latest-images

BeagleBone Cookbook

Fig. 1.7: Latest Debian images

12 Chapter 1. Basics

BeagleBone Cookbook

Note: The onboard flash is often called the eMMC memory. We just call it onboard flash, but you’ll often see
eMMC appearing in filenames of images used to update the onboard flash.

Click the image you want to use and it will download. The images are some 500M, so it might take a while.

1.9 Running the Latest Version of the OS on Your Bone

1.9.1 Problem

You want to run the latest version of the operating system on your Bone without changing the onboard flash.

1.9.2 Solution

This solution is to flash an external microSD card and run the Bone from it. If you boot the Bone with a microSD
card inserted with a valid boot image, it will boot from the microSD card. If you boot without the microSD card
installed, it will boot from the onboard flash.

Tip: If you want to reflash the onboard flash memory, see Updating the Onboard Flash.

Note: I instruct my students to use the microSD for booting. I suggest they keep an extra microSD flashed
with the current OS. If they mess up the one on the Bone, it takes only a moment to swap in the extra microSD,
boot up, and continue running. If they are running off the onboard flash, it will take much longer to reflash and
boot from it.

Download the image you found in Finding the Latest Version of the OS for Your Bone. It’s more than 500 MB,
so be sure to have a fast Internet connection. Then go to http://beagleboard.org/getting-started#update and
follow the instructions there to install the image you downloaded.

1.10 Updating the OS on Your Bone

1.10.1 Problem

You’ve installed the latest version of Debian on your Bone (Running the Latest Version of the OS on Your Bone),
and you want to be sure it’s up-to-date.

1.10.2 Solution

Ensure that your Bone is on the network and then run the following command on the Bone:

bone$ sudo apt update
bone$ sudo apt upgrade

If there are any new updates, they will be installed.

Note: If you get the error The following signatures were invalid: KEYEXPIRED 1418840246, see eLinux support
page for advice on how to fix it.

1.9. Running the Latest Version of the OS on Your Bone 13

http://beagleboard.org/getting-started#update
http://bit.ly/1EXocb6
http://bit.ly/1EXocb6

BeagleBone Cookbook

1.10.3 Discussion

After you have a current image running on the Bone, it’s not at all difficult to keep it upgraded.

1.11 Backing Up the Onboard Flash

1.11.1 Problem

You’ve modified the state of your Bone in a way that you’d like to preserve or share. Note, this doesn’t apply
to boards that don’t have onboard flash (PocketBeagle and BeagleY-AI).

1.11.2 Solution

The eLinux wiki page on BeagleBone Black Extracting eMMC contents provides some simple steps for copying
the contents of the onboard flash to a file on a microSD card:

• Get a 4 GB or larger microSD card that is FAT formatted.

• If you create a FAT-formatted microSD card, you must edit the partition and ensure that it is a bootable
partition.

• Download beagleboneblack-save-emmc.zip and uncompress and copy the contents onto your microSD
card.

• Eject the microSD card from your computer, insert it into the powered-off BeagleBone Black, and apply
power to your board.

• You’ll notice USER0 (the LED closest to the S1 button in the corner) will (after about 20 seconds) begin
to blink steadily, rather than the double-pulse “heartbeat” pattern that is typical when your BeagleBone
Black is running the standard Linux kernel configuration.

• It will run for a bit under 10 minutes and then USER0 will stay on steady. That’s your cue to remove
power, remove the microSD card, and put it back into your computer.

• You will see a file called BeagleBoneBlack-eMMC-image-XXXXX.img, where XXXXX is a set of random
numbers. Save this file to use for restoring your image later.

Note: Because the date won’t be set on your board, you might want to adjust the date on the file to remember
when you made it. For storage on your computer, these images will typically compress very well, so use your
favorite compression tool.

Tip: The eLinux wiki is the definitive place for the BeagleBoard.org community to share information about the
Beagles. Spend some time looking around for other helpful information.

1.12 Updating the Onboard Flash

1.12.1 Problem

You want to copy the microSD card to the onboard flash. Note, this doesn’t apply to boards that don’t have
onboard flash (PocketBeagle and BeagleY-AI).

14 Chapter 1. Basics

http://elinux.org/Beagleboard
http://bit.ly/1C57I0a
http://bit.ly/1wtXwNP
http://elinux.org/Beagleboard

BeagleBone Cookbook

1.12.2 Solution

If you want to update the onboard flash with the contents of the microSD card,

• Repeat the steps in Running the Latest Version of the OS on Your Bone to update the OS.

• Attach to an external 5 V source. you must be powered from an external 5 V source. The flashing process
requires more current than what typically can be pulled from USB.

• Boot from the microSD card.

• Log on to the bone and edit /boot/uEnv.txt.

• Uncomment out the last line cmdline=init=/usr/sbin/init-beagle-flasher.

• Save the file and reboot.

• The USR LEDs will flash back and forth for a few minutes.

• When they stop flashing, remove the SD card and reboot.

• You are now running from the newly flashed onboard flash.

Warning: If you write the onboard flash, be sure to power the Bone from an external 5 V source.
The USB might not supply enough current.

When you boot from the microSD card, it will copy the image to the onboard flash. When all four USER LEDs
turn off (in some versions, they all turn on), you can power down the Bone and remove the microSD card. The
next time you power up, the Bone will boot from the onboard flash.

1.12. Updating the Onboard Flash 15

BeagleBone Cookbook

16 Chapter 1. Basics

Chapter 2

Sensors

Note: Although the examples given here are originally for the BeagleBone Black, many will also work on the
other Beagles too. See the tabs for details on running the examples on other boards.

In this chapter, you will learn how to sense the physical world with BeagleBone Black. Various types of elec-
tronic sensors, such as cameras and microphones, can be connected to the Bone using one or more interfaces
provided by the standard USB 2.0 host port, as shown in The USB 2.0 host port.

Note: All the examples in the book assume you have cloned the Cookbook repository on git.beagleboard.org.
Go here Cloning the Cookbook Repository for instructions.

BeagleBone Black

The two 46-pin cape headers (called P8 and P9) along the long edges of the board (Cape Headers P8 and P9)
provide connections for cape add-on boards, digital and analog sensors, and more.

BeagleY-AI

The 40-pin hat header along the long edge of the board provides connections for hat add-on boards, digital
and analog sensors, and more.

The simplest kind of sensor provides a single digital status, such as off or on, and can be handled by an
input mode of one of the Bone’s 65 general-purpose input/output (GPIO) pins. More complex sensors can be
connected by using one of the Bone’s seven analog-to-digital converter (ADC) inputs or several I2C buses.

Displays and Other Outputs discusses some of the output mode usages of the GPIO pins.

All these examples assume that you know how to edit a file (Editing Code Using Visual Studio Code) and run
it, either within the Visual Studio Code (VSC) integrated development environment (IDE) or from the command
line (Getting to the Command Shell via SSH).

2.1 Choosing a Method to Connect Your Sensor

2.1.1 Problem

You want to acquire and attach a sensor and need to understand your basic options.

17

BeagleBone Cookbook

Fig. 2.1: The USB 2.0 host port

Fig. 2.2: Cape Headers P8 and P9

18 Chapter 2. Sensors

BeagleBone Cookbook

Fig. 2.3: BeagleY-AI Front View

2.1.2 Solution

BeagleBones

Some of the many sensor connection options on the Bone. shows many of the possibilities for connecting a
sensor.

BeagleY-AI

BeagleY-AI pinout shows many of the possibilities for connecting a sensor.

You will see pins referenced in several ways. While this is confusing at first, in reality, we can pick our favorite
way and stick to it.

The two main ways of referring to GPIOs is by their number, so GPIO2, GPIO3, GPIO4 etc. as seen in the
diagram below. This corresponds to the SoC naming convention. For broad compatibility, BeagleY-AI re-uses
the Broadcom GPIO numbering scheme used by RaspberryPi.

The second (and arguably easier) way we will use for this tutorial is to use the actual pin header number
(shown in dark grey). So, for the rest of the tutorial, if we refer to hat-08-gpio we mean the 8th pin of the
GPIO header. Which, if you referenced the image below, can see refers to GPIO14 (UART TXD)

Go to https://pinout.beagleboard.io/ to see an interactive version of the figure.

Choosing the simplest solution available enables you to move on quickly to addressing other system aspects.
By exploring each connection type, you can make more informed decisions as you seek to optimize and trou-
bleshoot your design.

2.2 Input and Run a Python or JavaScript Application for Talking to
Sensors

2.2. Input and Run a Python or JavaScript Application for Talking to Sensors 19

https://pinout.beagleboard.io/

BeagleBone Cookbook

Fig. 2.4: Some of the many sensor connection options on the Bone.

2.2.1 Problem

You have your sensors all wired up and your Bone booted up, and you need to know how to enter and run your
code.

2.2.2 Solution

You are just a few simple steps from running any of the recipes in this book.

• Plug your Bone into a host computer via the USB cable (Getting Started, Out of the Box).

• Start Visual Studio Code (Editing Code Using Visual Studio Code).

• In the bash tab (as shown in Entering commands in the VSC bash tab), run the following commands:

bone$ cd
bone$ cd beaglebone-cookbook-code/02sensors

Here, we issued the change directory (cd) command without specifying a target directory. By default, it takes
you to your home directory. Notice that the prompt has changed to reflect the change.

Note: If you log in as debian, your home is /home/debian. If you were to create a new user called newuser,
that user’s home would be /home/newuser. By default, all non-root (non-superuser) users have their home
directories in /home.

Note: All the examples in the book assume you have cloned the Cookbook repository on git.beagleboard.org.
Go here Cloning the Cookbook Repository for instructions.

• Double-click the pushbutton.py file to open it.

20 Chapter 2. Sensors

BeagleBone Cookbook

Fig. 2.5: BeagleY-AI pinout

2.2. Input and Run a Python or JavaScript Application for Talking to Sensors 21

BeagleBone Cookbook

Fig. 2.6: Entering commands in the VSC bash tab

22 Chapter 2. Sensors

BeagleBone Cookbook

• Press ^S (Ctrl-S) to save the file. (You can also go to the File menu in VSC and select Save to save the
file, but Ctrl-S is easier.) Even easier, VSC can be configured to autosave every so many seconds.

• In the bash tab, enter the following commands:

debian@beaglebone:beaglebone-cookbook/code/02sensors$./pushbutton.py
data = 0
data = 0
data = 1
data = 1
^C

This process will work for any script in this book. (See the following sections for instructions on how to wire the
pushbutton.)

2.3 Reading the Status of a Pushbutton or Magnetic Switch (Passive
On/Off Sensor)

2.3.1 Problem

You want to read a pushbutton, a magnetic switch, or other sensor that is electrically open or closed.

2.3.2 Solution

Connect the switch to a GPIO pin and read from the proper place in /sys/class/gpio.

To make this recipe, you will need:

• Breadboard and jumper wires.

• Pushbutton switch.

• Magnetic reed switch. (optional)

You can wire up either a pushbutton, a magnetic reed switch, or both on the Bone, as shown in Diagram for
wiring a pushbutton and magnetic reed switch input.

The code below reads GPIO port P9_42, which is attached to the pushbutton.

Note: If you are using a BeagleY-AI, wire the button to GPIO23 which is hat-16. This also appears at
gpiochip0 and line 7.

Python

Listing 2.1: Monitoring a pushbutton (pushbutton.py)

1 #!/usr/bin/env python
2 # //
3 # // pushbutton.py
4 # // Reads P9_42 and prints its value.
5 # // Wiring: Connect a switch between P9_42 and 3.3V
6 # // Setup:
7 # // See:
8 # //
9 import time
10 import gpiod
11 import os

(continues on next page)

2.3. Reading the Status of a Pushbutton or Magnetic Switch (Passive On/Off Sensor) 23

BeagleBone Cookbook

Fig. 2.7: Diagram for wiring a pushbutton and magnetic reed switch input

(continued from previous page)

12

13 ms = 100 # Read time in ms
14 CHIP = 'gpiochip0'
15 LINE_OFFSET = [7] # P9_42 is gpio 7
16 chip = gpiod.Chip(CHIP)
17 lines = chip.get_lines(LINE_OFFSET)
18 lines.request(consumer='pushbutton.py', type=gpiod.LINE_REQ_DIR_IN)
19

20 while True:
21 data = lines.get_values()
22 print('data = ' + str(data[0]))
23 time.sleep(ms/1000)

pushbutton.py

c

Listing 2.2: Monitoring a pushbutton (pushbutton.c)

1 //
2 // pushbutton.c
3 // Reads P9_42 and prints its value.
4 // Wiring: Connect a switch between P9_42 and 3.3V
5 // Setup:
6 // See:
7 //
8 #include <gpiod.h>
9 #include <stdio.h>
10 #include <unistd.h>
11

12 #define CONSUMER ”pushbutton.c”
(continues on next page)

24 Chapter 2. Sensors

BeagleBone Cookbook

(continued from previous page)

13

14 int main(int argc, char **argv)
15 {
16 int chipnumber = 0;
17 unsigned int line_num = 7;
18 struct gpiod_line *line;
19 struct gpiod_chip *chip;
20 int i, ret;
21

22 chip = gpiod_chip_open_by_number(chipnumber);
23 line = gpiod_chip_get_line(chip, line_num);
24 ret = gpiod_line_request_input(line, CONSUMER);
25

26 /* Get */
27 while(1) {
28 printf(”%d\r”, gpiod_line_get_value(line));
29 usleep(100);
30 }
31 }

pushbutton.c

Put this code in a file called pushbutton.py following the steps in Input and Run a Python or JavaScript Application
for Talking to Sensors. In the VSC bash tab, run it by using the following commands:

bone$./pushbutton.py
data = 0
data = 0
data = 1
data = 1
^C

The command runs it. Try pushing the button. The code reads the pin and prints its current value.

You will have to press ^C (Ctrl-C) to stop the code.

If you want to run the C version do:

bone$ gcc -o pushbutton pushbutton.c -lgpiod
bone$./pushbutton
data = 0
data = 0
data = 1
data = 1
^C

If you want to use the magnetic reed switch wired as shown in Diagram for wiring a pushbutton and magnetic
reed switch input, change P9_42 to P9_26 which is gpio 14.

2.4 Mapping Header Numbers to gpio Numbers

2.4.1 Problem

You have a sensor attached to the P8 or P9 header and need to know which gpio pin it is using.

2.4.2 Solution

The gpioinfo command displays information about all the P8 and P9 header pins. (Or the HAT header pins if
you are on the BeagleY-AI.) To see the info for just one pin, use grep.

2.4. Mapping Header Numbers to gpio Numbers 25

BeagleBone Cookbook

bone$ gpioinfo | grep -e chip -e P9.42
gpiochip0 - 32 lines:

line 7: ”P8_42A [ecappwm0]” ”P9_42” input active-high [used]
gpiochip1 - 32 lines:
gpiochip2 - 32 lines:
gpiochip3 - 32 lines:

Or, if on the BeagleY-AI.

bone$ gpioinfo | grep -e chip -e GPIO23
gpiochip0 - 24 lines:

line 7: ”GPIO23” unused input active-high
gpiochip1 - 87 lines:
gpiochip2 - 73 lines:

This shows P9_42 (GPIO32) is on chip 0 and pin 7. To find the gpio number multiply the chip number by 32 and
add it to the pin number. This gives 0*32+7=7.

For P9_26 you get:

bone$ gpioinfo | grep -e chip -e P9.26
gpiochip0 - 32 lines:

line 14: ”P9_26 [uart1_rxd]” ”P9_26” input active-high [used]
gpiochip1 - 32 lines:
gpiochip2 - 32 lines:
gpiochip3 - 32 lines:

0*32+14=14, so the P9_26 pin is gpio 14.

2.5 Reading a Position, Light, or Force Sensor (Variable Resistance
Sensor)

2.5.1 Problem

You have a variable resistor, force-sensitive resistor, flex sensor, or any of a number of other sensors that
output their value as a variable resistance, and you want to read their value with the Bone.

2.5.2 Solution

Note: The BeagleY-AI doesn’t have ADC’s, so you can skip this section.

Use the Bone’s analog-to-digital converters (ADCs) and a resistor divider circuit to detect the resistance in the
sensor.

The Bone has seven built-in analog inputs that can easily read a resistive value. Seven analog inputs on P9
header shows them on the lower part of the P9 header.

To make this recipe, you will need:

• Breadboard and jumper wires.

• 10k trimpot or

• Flex resistor (optional)

• 22 kΩ resistor

26 Chapter 2. Sensors

BeagleBone Cookbook

Fig. 2.8: Seven analog inputs on P9 header

A variable resistor with three terminals

Wiring a 10 kΩ variable resistor (trimpot) to an ADC port shows a simple variable resistor (trimpot) wired to the
Bone. One end terminal is wired to the ADC 1.8 V power supply on pin P9_32, and the other end terminal is
attached to the ADC ground (P9_34). The middle terminal is wired to one of the seven analog-in ports (P9_36).

The section below shows the code used to read the variable resistor. Add the code to a file called analogIn.py
and run it; then change the resistor and run it again. The voltage read will change.

Python

Listing 2.3: Reading an analog voltage (analogIn.py)

1 #!/usr/bin/env python3
2 #//////////////////////////////////////
3 # analogin.py
4 # Reads the analog value of the light sensor.
5 #//////////////////////////////////////
6 import time
7 import os
8

9 pin = ”2” # light sensor, A2, P9_37
10

11 IIOPATH='/sys/bus/iio/devices/iio:device0/in_voltage'+pin+'_raw'
12

13 print('Hit ^C to stop')
14

15 f = open(IIOPATH, ”r”)
16

17 while True:
(continues on next page)

2.5. Reading a Position, Light, or Force Sensor (Variable Resistance Sensor) 27

BeagleBone Cookbook

Fig. 2.9: Wiring a 10 kΩ variable resistor (trimpot) to an ADC port

(continued from previous page)

18 f.seek(0)
19 x = float(f.read())/4096
20 print('{}: {:.1f}%, {:.3f} V'.format(pin, 100*x, 1.8*x), end = '\r')
21 time.sleep(0.1)
22

23 # // Bone | Pocket | AIN
24 # // ----- | ------ | ---
25 # // P9_39 | P1_19 | 0
26 # // P9_40 | P1_21 | 1
27 # // P9_37 | P1_23 | 2
28 # // P9_38 | P1_25 | 3
29 # // P9_33 | P1_27 | 4
30 # // P9_36 | P2_35 | 5
31 # // P9_35 | P1_02 | 6

analogIn.py

JavaScript

Listing 2.4: Reading an analog voltage (analogIn.js)

1 #!/usr/bin/env node
2 //////////////////////////////////////
3 // analogin.js
4 // Reads the analog value of the light sensor.
5 //////////////////////////////////////
6 const fs = require(”fs”);
7 const ms = 500; // Time in milliseconds
8

9 const pin = ”2”; // light sensor, A2, P9_37
10

(continues on next page)

28 Chapter 2. Sensors

BeagleBone Cookbook

(continued from previous page)

11 const IIOPATH='/sys/bus/iio/devices/iio:device0/in_voltage'+pin+'_raw';
12

13 console.log('Hit ^C to stop');
14

15 // Read every 500ms
16 setInterval(readPin, ms);
17

18 function readPin() {
19 var data = fs.readFileSync(IIOPATH).slice(0, -1);
20 console.log('data = ' + data);
21 }
22 // Bone | Pocket | AIN
23 // ----- | ------ | ---
24 // P9_39 | P1_19 | 0
25 // P9_40 | P1_21 | 1
26 // P9_37 | P1_23 | 2
27 // P9_38 | P1_25 | 3
28 // P9_33 | P1_27 | 4
29 // P9_36 | P2_35 | 5
30 // P9_35 | P1_02 | 6

analogIn.js

Note: The code above outputs a value between 0 and 4096.

A variable resistor with two terminals

Some resistive sensors have only two terminals, such as the flex sensor in Reading a two-terminal flex resistor
The resistance between its two terminals changes when it is flexed. In this case, we need to add a fixed resistor
in series with the flex sensor. Reading a two-terminal flex resistor shows how to wire in a 22 kΩ resistor to give
a voltage to measure across the flex sensor.

Fig. 2.10: Reading a two-terminal flex resistor

The code in analogIn.py also works for this setup.

2.6 Reading a Distance Sensor (Analog or Variable Voltage Sensor)

2.6. Reading a Distance Sensor (Analog or Variable Voltage Sensor) 29

BeagleBone Cookbook

2.6.1 Problem

You want to measure distance with a LV-MaxSonar-EZ1 Sonar Range Finder, which outputs a voltage in propor-
tion to the distance.

2.6.2 Solution

Note: The BeagleY-AI doesn’t have ADC’s, so you can skip this section.

To make this recipe, you will need:

• Breadboard and jumper wires.

• LV-MaxSonar-EZ1 Sonar Range Finder

All you have to do is wire the EZ1 to one of the Bone’s analog-in pins, as shown inWiring the LV-MaxSonar-EZ1
Sonar Range Finder to the P9_33 analog-in port. The device outputs ~6.4 mV/in when powered from 3.3 V.

Warning: Make sure not to apply more than 1.8 V to the Bone’s analog-in pins, or you will likely damage
them. In practice, this circuit should follow that rule.

Fig. 2.11: Wiring the LV-MaxSonar-EZ1 Sonar Range Finder to the P9_33 analog-in port

ultrasonicRange.py shows the code that reads the sensor at a fixed interval.

Python

30 Chapter 2. Sensors

https://www.sparkfun.com/products/11309

BeagleBone Cookbook

Listing 2.5: Reading an analog voltage (ultrasonicRange.py)

1 #!/usr/bin/env python
2 # //////////////////////////////////////
3 # // ultrasonicRange.js
4 # // Reads the analog value of the sensor.
5 # //////////////////////////////////////
6 import time
7 ms = 250; # Time in milliseconds
8

9 pin = ”0” # sensor, A0, P9_39
10

11 IIOPATH='/sys/bus/iio/devices/iio:device0/in_voltage'+pin+'_raw'
12

13 print('Hit ^C to stop');
14

15 f = open(IIOPATH, ”r”)
16 while True:
17 f.seek(0)
18 data = f.read()[:-1]
19 print('data= ' + data)
20 time.sleep(ms/1000)
21

22 # // Bone | Pocket | AIN
23 # // ----- | ------ | ---
24 # // P9_39 | P1_19 | 0
25 # // P9_40 | P1_21 | 1
26 # // P9_37 | P1_23 | 2
27 # // P9_38 | P1_25 | 3
28 # // P9_33 | P1_27 | 4
29 # // P9_36 | P2_35 | 5
30 # // P9_35 | P1_02 | 6

ultrasonicRange.py

JavaScript

Listing 2.6: Reading an analog voltage (ultrasonicRange.js)

1 #!/usr/bin/env node
2 //////////////////////////////////////
3 // ultrasonicRange.js
4 // Reads the analog value of the sensor.
5 //////////////////////////////////////
6 const fs = require(”fs”);
7 const ms = 250; // Time in milliseconds
8

9 const pin = ”0”; // sensor, A0, P9_39
10

11 const IIOPATH='/sys/bus/iio/devices/iio:device0/in_voltage'+pin+'_raw';
12

13 console.log('Hit ^C to stop');
14

15 // Read every ms
16 setInterval(readPin, ms);
17

18 function readPin() {
19 var data = fs.readFileSync(IIOPATH);
20 console.log('data= ' + data);
21 }
22 // Bone | Pocket | AIN

(continues on next page)

2.6. Reading a Distance Sensor (Analog or Variable Voltage Sensor) 31

BeagleBone Cookbook

(continued from previous page)

23 // ----- | ------ | ---
24 // P9_39 | P1_19 | 0
25 // P9_40 | P1_21 | 1
26 // P9_37 | P1_23 | 2
27 // P9_38 | P1_25 | 3
28 // P9_33 | P1_27 | 4
29 // P9_36 | P2_35 | 5
30 // P9_35 | P1_02 | 6

ultrasonicRange.js

2.7 Reading a Distance Sensor (Variable Pulse Width Sensor)

2.7.1 Problem

You want to use a HC-SR04 Ultrasonic Range Sensor with BeagleBone Black.

2.7.2 Solution

The HC-SR04 Ultrasonic Range Sensor (shown in HC-SR04 Ultrasonic range sensor) works by sending a trigger
pulse to the Trigger input and then measuring the pulse width on the Echo output. The width of the pulse tells
you the distance.

Fig. 2.12: HC-SR04 Ultrasonic range sensor

To make this recipe, you will need:

• Breadboard and jumper wires.

• 10 kΩ and 20 kΩ resistors

• HC-SR04 Ultrsonic Range Sensor.

32 Chapter 2. Sensors

BeagleBone Cookbook

Wire the sensor as shown in Wiring an HC-SR04 Ultrasonic Sensor. Note that the HC-SR04 is a 5 V device,
so the banded wire (running from P9_7 on the Bone to VCC on the range finder) attaches the HC-SR04 to the
Bone’s 5 V power supply.

Fig. 2.13: Wiring an HC-SR04 Ultrasonic Sensor

Driving a HC-SR04 ultrasound sensor (hc-sr04-ultraSonic.js) shows BoneScript code used to drive the HC-SR04.

Listing 2.7: Driving a HC-SR04 ultrasound sensor (hc-sr04-
ultraSonic.js)

1 #!/usr/bin/env node
2

3 // This is an example of reading HC-SR04 Ultrasonic Range Finder
4 // This version measures from the fall of the Trigger pulse
5 // to the end of the Echo pulse
6

7 var b = require('bonescript');
8

9 var trigger = 'P9_16', // Pin to trigger the ultrasonic pulse
10 echo = 'P9_41', // Pin to measure to pulse width related to the␣

↪→distance
11 ms = 250; // Trigger period in ms
12

13 var startTime, pulseTime;
14

15 b.pinMode(echo, b.INPUT, 7, 'pulldown', 'fast', doAttach);
16 function doAttach(x) {
17 if(x.err) {
18 console.log('x.err = ' + x.err);
19 return;
20 }
21 // Call pingEnd when the pulse ends
22 b.attachInterrupt(echo, true, b.FALLING, pingEnd);
23 }
24

25 b.pinMode(trigger, b.OUTPUT);
(continues on next page)

2.7. Reading a Distance Sensor (Variable Pulse Width Sensor) 33

BeagleBone Cookbook

(continued from previous page)

26

27 b.digitalWrite(trigger, 1); // Unit triggers on a falling edge.
28 // Set trigger to high so we call pull it␣

↪→low later
29

30 // Pull the trigger low at a regular interval.
31 setInterval(ping, ms);
32

33 // Pull trigger low and start timing.
34 function ping() {
35 // console.log('ping');
36 b.digitalWrite(trigger, 0);
37 startTime = process.hrtime();
38 }
39

40 // Compute the total time and get ready to trigger again.
41 function pingEnd(x) {
42 if(x.attached) {
43 console.log(”Interrupt handler attached”);
44 return;
45 }
46 if(startTime) {
47 pulseTime = process.hrtime(startTime);
48 b.digitalWrite(trigger, 1);
49 console.log('pulseTime = ' + (pulseTime[1]/1000000-0.8).toFixed(3));
50 }
51 }

hc-sr04-ultraSonic.js

This code is more complex than others in this chapter, because we have to tell the device when to start
measuring and time the return pulse.

2.8 Accurately Reading the Position of a Motor or Dial

2.8.1 Problem

Todo: Update for BeagleY-AI

You have a motor or dial and want to detect rotation using a rotary encoder.

2.8.2 Solution

Use a rotary encoder (also called a quadrature encoder) connected to one of the Bone’s eQEP ports, as shown
in Wiring a rotary encoder using eQEP2.

Table 2.1: On the BeagleBone and PocketBeage the three encoders are:

eQEP0 P9.27 and P9.42 OR P1_33 and P2_34
eQEP1 P9.33 and P9.35
eQEP2 P8.11 and P8.12 OR P2_24 and P2_33

34 Chapter 2. Sensors

BeagleBone Cookbook

Fig. 2.14: Wiring a rotary encoder using eQEP2

Table 2.2: On the AI it’s:

eQEP1 P8.33 and P8.35
eQEP2 P8.11 and P8.12 or P9.19 and P9.41
eQEP3 P8.24 and P8.25 or P9.27 and P9.42

To make this recipe, you will need:

• Breadboard and jumper wires.

• Rotary encoder.

We are using a quadrature rotary encoder, which has two switches inside that open and close in such a manner
that you can tell which way the shaft is turning. In this particular encoder, the two switches have a common
lead, which is wired to ground. It also has a pushbutton switch wired to the other side of the device, which we
aren’t using.

Wire the encoder to P8_11 and P8_12, as shown in Wiring a rotary encoder using eQEP2.

BeagleBone Black has built-in hardware for reading up to three encoders. Here, we’ll use the eQEP2 encoder
via the Linux count subsystem.

Then run the following commands:

bone$ config-pin P8_11 qep
bone$ config-pin P8_12 qep
bone$ show-pins | grep qep
P8.12 12 fast rx up 4 qep 2 in A ocp/P8_12_pinmux (pinmux_P8_12_
↪→qep_pin)
P8.11 13 fast rx up 4 qep 2 in B ocp/P8_11_pinmux (pinmux_P8_11_
↪→qep_pin)

This will enable eQEP2 on pins P8_11 and P8_12. The 2 after the qep returned by show-pins shows it’s eQEP2.

Finally, add the code below to a file named rotaryEncoder.py and run it.

2.8. Accurately Reading the Position of a Motor or Dial 35

BeagleBone Cookbook

Python

Listing 2.8: Reading a rotary encoder (rotaryEncoder.py)

1 #!/usr/bin/env python
2 # // This uses the eQEP hardware to read a rotary encoder
3 # // bone$ config-pin P8_11 eqep
4 # // bone$ config-pin P8_12 eqep
5 import time
6

7 eQEP = '2'
8 COUNTERPATH = '/dev/bone/counter/counter'+eQEP+'/count0'
9

10 ms = 100 # Time between samples in ms
11 maxCount = '1000000'
12

13 # Set the eEQP maximum count
14 f = open(COUNTERPATH+'/ceiling', 'w')
15 f.write(maxCount)
16 f.close()
17

18 # Enable
19 f = open(COUNTERPATH+'/enable', 'w')
20 f.write('1')
21 f.close()
22

23 f = open(COUNTERPATH+'/count', 'r')
24

25 olddata = -1
26 while True:
27 f.seek(0)
28 data = f.read()[:-1]
29 # Print only if data changes
30 if data != olddata:
31 olddata = data
32 print(”data = ” + data)
33 time.sleep(ms/1000)
34

35 # Black OR Pocket
36 # eQEP0: P9.27 and P9.42 OR P1_33 and P2_34
37 # eQEP1: P9.33 and P9.35
38 # eQEP2: P8.11 and P8.12 OR P2_24 and P2_33
39

40 # AI
41 # eQEP1: P8.33 and P8.35
42 # eQEP2: P8.11 and P8.12 or P9.19 and P9.41
43 # eQEP3: P8.24 and P8.25 or P9.27 and P9.42

rotaryEncoder.py

JavaScript

Listing 2.9: Reading a rotary encoder (rotaryEncoder.js)

1 #!/usr/bin/env node
2 // This uses the eQEP hardware to read a rotary encoder
3 // bone$ config-pin P8_11 eqep
4 // bone$ config-pin P8_12 eqep
5 const fs = require(”fs”);
6

7 const eQEP = ”2”;
(continues on next page)

36 Chapter 2. Sensors

BeagleBone Cookbook

(continued from previous page)

8 const COUNTERPATH = '/dev/bone/counter/counter'+eQEP+'/count0';
9

10 const ms = 100; // Time between samples in ms
11 const maxCount = '1000000';
12

13 // Set the eEQP maximum count
14 fs.writeFileSync(COUNTERPATH+'/ceiling', maxCount);
15

16 // Enable
17 fs.writeFileSync(COUNTERPATH+'/enable', '1');
18

19 setInterval(readEncoder, ms); // Check state every ms
20

21 var olddata = -1;
22 function readEncoder() {
23 var data = parseInt(fs.readFileSync(COUNTERPATH+'/count'));
24 if(data != olddata) {
25 // Print only if data changes
26 console.log('data = ' + data);
27 olddata = data;
28 }
29 }
30

31 // Black OR Pocket
32 // eQEP0: P9.27 and P9.42 OR P1_33 and P2_34
33 // eQEP1: P9.33 and P9.35
34 // eQEP2: P8.11 and P8.12 OR P2_24 and P2_33
35

36 // AI
37 // eQEP1: P8.33 and P8.35
38 // eQEP2: P8.11 and P8.12 or P9.19 and P9.41
39 // eQEP3: P8.24 and P8.25 or P9.27 and P9.42

rotaryEncoder.js

Try rotating the encoder clockwise and counter-clockwise. You’ll see an output like this:

data = 32
data = 40
data = 44
data = 48
data = 39
data = 22
data = 0
data = 999989
data = 999973
data = 999972
^C

The values you get for data will depend on which way you are turning the device and how quickly. You will need
to press ^C (Ctrl-C) to end.

2.8.3 See Also

You can also measure rotation by using a variable resistor (see Wiring a 10 kΩ variable resistor (trimpot) to an
ADC port).

2.8. Accurately Reading the Position of a Motor or Dial 37

BeagleBone Cookbook

2.9 Acquiring Data by Using a Smart Sensor over a Serial Connec-
tion

2.9.1 Problem

You want to connect a smart sensor that uses a built-in microcontroller to stream data, such as a global posi-
tioning system (GPS), to the Bone and read the data from it.

2.9.2 Solution

The Bone has several serial ports (UARTs) that you can use to read data from an external microcontroller
included in smart sensors, such as a GPS. Just wire one up, and you’ll soon be gathering useful data, such as
your own location.

Here’s what you’ll need:

• Breadboard and jumper wires.

• GPS receiver

Wire your GPS, as shown in Wiring a GPS to UART 4.

Fig. 2.15: Wiring a GPS to UART 4

The GPS will produce raw National Marine Electronics Association (NMEA) data that’s easy for a computer to
read, but not for a human. There are many utilities to help convert such sensor data into a human-readable
form. For this GPS, run the following command to load a NMEA parser:

bone$ npm install -g nmea

Running the code in Talking to a GPS with UART 4 (GPS.js) will print the current location every time the GPS
outputs it.

38 Chapter 2. Sensors

BeagleBone Cookbook

Listing 2.10: Talking to a GPS with UART 4 (GPS.js)

1 #!/usr/bin/env node
2 // Install with: npm install nmea
3

4 // Need to add exports.serialParsers = m.module.parsers;
5 // to the end of /usr/local/lib/node_modules/bonescript/serial.js
6

7 var b = require('bonescript');
8 var nmea = require('nmea');
9

10 var port = '/dev/ttyO4';
11 var options = {
12 baudrate: 9600,
13 parser: b.serialParsers.readline(”\n”)
14 };
15

16 b.serialOpen(port, options, onSerial);
17

18 function onSerial(x) {
19 if (x.err) {
20 console.log('***ERROR*** ' + JSON.stringify(x));
21 }
22 if (x.event == 'open') {
23 console.log('***OPENED***');
24 }
25 if (x.event == 'data') {
26 console.log(String(x.data));
27 console.log(nmea.parse(x.data));
28 }
29 }

GPS.js

If you don’t need the NMEA formatting, you can skip the npm part and remove the lines in the code that refer
to it.

Note: If you get an error like this TypeError: Cannot call method ‘readline’ of undefined

add this line to the end of file /usr/local/lib/node_modules/bonescript/
serial.js:

exports.serialParsers = m.module.parsers;

2.10 Measuring a Temperature

2.10.1 Problem

You want to measure a temperature using a digital temperature sensor.

2.10.2 Solution

The TMP101 sensor is a common digital temperature sensor that uses a standard I2C-based serial protocol.

To make this recipe, you will need:

• Breadboard and jumper wires.

• Two 4.7 kΩ resistors.

2.10. Measuring a Temperature 39

BeagleBone Cookbook

Fig. 2.16: Table of UART outputs

• TMP101 temperature sensor.

BeagleBone

Wire the TMP101, as shown in Wiring an I2C TMP101 temperature sensor.

There are two I2C buses brought out to the headers. Table of I2C outputs shows that you have wired your
device to I2C bus 2.

BeagleY-AI

Running the following on the BeagleY-AI shows it has five i2c buses.

bone$ ls /sys/bus/i2c/devices/
2-0030 2-0050 2-0068 4-004c i2c-1 i2c-2 i2c-3 i2c-4 i2c-5

But running https://pinout.beagleboard.io/ show only buses 1 and 4 are exposed on the HAT header. Here we’ll
use bus 2 whose clock appears on hat-03 and data on hat-05.

Wire your tmp101 as shown in the table.

Function hat tmp101
Ground 09 2
3.3V 01 5
data 03 6
clock 05 1

Once the I2C device is wired up, you can use a couple handy I2C tools to test the device. Because these are
Linux command-line tools, you have to use 2 as the bus number. i2cdetect, shown in I2C tools, shows which

40 Chapter 2. Sensors

https://pinout.beagleboard.io/

BeagleBone Cookbook

Fig. 2.17: Wiring an I2C TMP101 temperature sensor

Fig. 2.18: Table of I2C outputs

2.10. Measuring a Temperature 41

BeagleBone Cookbook

I2C devices are on the bus. The -r flag indicates which bus to use. Our TMP101 is appearing at address 0x49.
You can use the i2cget command to read the value. It returns the temperature in hexadecimal and degrees C.
In this example, 0x18 = 24{deg}C, which is 75.2{deg}F. (Hmmm, the office is a bit warm today.) Try warming
up the TMP101 with your finger and running i2cget again.

Todo: fix deg

2.11 I2C tools

One way to see what devices are on a given I2C bus is to use i2cdetect. Here is bus 2 on the BeagleBone.

bone$ i2cdetect -y -r 2
0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- 49 -- -- -- -- -- --
50: -- -- -- -- UU UU UU UU -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

bone$ i2cget -y 2 0x49
0x18

Here is bus 1 on the BeagleY-AI.

bone$ i2cdetect -y -r 1
0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- 49 -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

bone$ i2cget -y 1 0x49
0x18

2.12 Reading the temperature via the kernel driver

The cleanest way to read the temperature from at TMP101 sensor is to use the kernel driver.

Assuming the TMP101 is on bus 2 (the last digit is the bus number)

Note: Switch bus 2 to bus 1 if you are using the BeagleY-AI.

I2C TMP101 via Kernel

bone$ cd /sys/class/i2c-adapter/
bone$ ls
i2c-0 i2c-1 i2c-2 # Three i2c buses (bus 0 is internal)
bone$ cd i2c-2 # Pick bus 2

(continues on next page)

42 Chapter 2. Sensors

BeagleBone Cookbook

(continued from previous page)

bone$ ls -ls
0 --w--w---- 1 root gpio 4096 Jul 1 09:24 delete_device
0 lrwxrwxrwx 1 root gpio 0 Jun 30 16:25 device -> ../../4819c000.i2c
0 drwxrwxr-x 3 root gpio 0 Dec 31 1999 i2c-dev
0 -r--r--r-- 1 root gpio 4096 Dec 31 1999 name
0 --w--w---- 1 root gpio 4096 Jul 1 09:24 new_device
0 lrwxrwxrwx 1 root gpio 0 Jun 30 16:25 of_node -> ../../../../../../../..
↪→/firmware/devicetree/base/ocp/interconnect@48000000/segment@100000/target-
↪→module@9c000/i2c@0
0 drwxrwxr-x 2 root gpio 0 Dec 31 1999 power
0 lrwxrwxrwx 1 root gpio 0 Jun 30 16:25 subsystem -> ../../../../../../../
↪→../bus/i2c
0 -rw-rw-r-- 1 root gpio 4096 Dec 31 1999 uevent

Assuming the TMP101 is at address 0x49

bone$ echo tmp101 0x49 > new_device

Note: If this returns new_device: Permission denied, you will need to run the following first.

bone$ sudo chown debian:gpio *

This tells the kernel you have a TMP101 sensor at address 0x49. Check the log to be sure.

bone$ dmesg -H | tail -3
[+13.571823] i2c i2c-2: new_device: Instantiated device tmp101 at 0x49
[+0.043362] lm75 2-0049: supply vs not found, using dummy regulator
[+0.009976] lm75 2-0049: hwmon0: sensor 'tmp101'

Yes, it’s there, now see what happened.

bone$ ls
2-0049 delete_device device i2c-dev name new_device of_node power ␣
↪→subsystem uevent

Notice a new directory has appeared. It’s for i2c bus 2, address 0x49. Look into it.

bone$ cd 2-0049/hwmon/hwmon0
bone$ ls -F
device@ name power/ subsystem@ temp1_input temp1_max temp1_max_hyst ␣
↪→uevent update_interval
bone$ cat temp1_input
24250

There is the temperature in milli-degrees C.

Other i2c devices are supported by the kernel. You can try the Linux Kernel Driver Database, https://cateee.
net/lkddb/ to see them.

Once the driver is in place, you can read it via code. i2cTemp.py` shows how to read the TMP101.

Python

Listing 2.11: Reading an I2C device (i2cTemp.py)

1 #!/usr/bin/env python
2 # //
3 # // i2cTemp.py
4 # // Read a TMP101 sensor on i2c bus 2, address 0x49

(continues on next page)

2.12. Reading the temperature via the kernel driver 43

https://cateee.net/lkddb/
https://cateee.net/lkddb/

BeagleBone Cookbook

(continued from previous page)

5 # // Wiring: Attach to i2c as shown in text.
6 # // Setup: echo tmp101 0x49 > /sys/class/i2c-adapter/i2c-2/

↪→new_device
7 # // See:
8 # //
9 import time
10

11 ms = 1000 # Read time in ms
12 bus = '2'
13 addr = '49'
14 I2CPATH='/sys/class/i2c-adapter/i2c-'+bus+'/'+bus+'-00'+addr+'/hwmon/hwmon0';
15

16 f = open(I2CPATH+”/temp1_input”, ”r”)
17

18 while True:
19 f.seek(0)
20 data = f.read()[:-1] # returns mili-degrees C
21 print(”data (C) = ” + str(int(data)/1000))
22 time.sleep(ms/1000)

i2cTemp.py

JavaScript

Listing 2.12: Reading an I2C device (i2cTemp.js)

1 #!/usr/bin/env node
2 //
3 // i2cTemp.js
4 // Read at TMP101 sensor on i2c bus 2, address 0x49
5 // Wiring: Attach to i2c as shown in text.
6 // Setup: echo tmp101 0x49 > /sys/class/i2c-adapter/i2c-2/new_

↪→device
7 // See:
8 //
9 const fs = require(”fs”);
10

11 const ms = 1000; // Read time in ms
12 const bus = '2';
13 const addr = '49';
14 I2CPATH='/sys/class/i2c-adapter/i2c-'+bus+'/'+bus+'-00'+addr+'/hwmon/hwmon0';
15

16 // Read every ms
17 setInterval(readTMP, ms);
18

19 function readTMP() {
20 var data = fs.readFileSync(I2CPATH+”/temp1_input”).slice(0, -1);
21 console.log('data (C) = ' + data/1000);
22 }

i2cTemp.js

Run the code by using the following command:

bone$./i2cTemp.js
data (C) = 25.625
data (C) = 27.312
data (C) = 28.187
data (C) = 28.375
^C

44 Chapter 2. Sensors

BeagleBone Cookbook

Notice using the kernel interface gets you more digits of accuracy.

2.13 Reading i2c device directly

The TMP102 sensor can be read directly with i2c commands rather than using the kernel driver. First you need
to install the i2c module.

bone$ sudo apt install python3-smbus

Listing 2.13: Reading an I2C device (i2cTemp.py)

1 #!/usr/bin/env python
2 # //
3 # // i2ctmp101.py
4 # // Read at TMP101 sensor on i2c bus 2, address 0x49
5 # // Wiring: Attach to i2c as shown in text.
6 # // Setup: pip install smbus
7 # // See:
8 # //
9 import smbus
10 import time
11

12 ms = 1000 # Read time in ms
13 bus = smbus.SMBus(2) # Using i2c bus 2
14 addr = 0x49 # TMP101 is at address 0x49
15

16 while True:
17 data = bus.read_byte_data(addr, 0)
18 print(”temp (C) = ” + str(data))
19 time.sleep(ms/1000)

i2ctmp101.py

This gets only 8 bits for the temperature. See the TMP101 datasheet (https://www.ti.com/product/TMP101) for
details on how to get up to 12 bits.

2.14 Reading Temperature via a Dallas 1-Wire Device

2.14.1 Problem

You want to measure a temperature using a Dallas Semiconductor DS18B20 temperature sensor.

2.14.2 Solution

Todo: Update for BeagleY-AI

The DS18B20 is an interesting temperature sensor that uses Dallas Semiconductor’s 1-wire interface. The data
communication requires only one wire! (However, you still need wires from ground and 3.3 V.) You can wire it
to any GPIO port.

To make this recipe, you will need:

• Breadboard and jumper wires.

• 4.7 kΩ resistor

• DS18B20 1-wire temperature sensor.

2.13. Reading i2c device directly 45

https://www.ti.com/product/TMP101

BeagleBone Cookbook

Wire up as shown in Wiring a Dallas 1-Wire temperature sensor.

Fig. 2.19: Wiring a Dallas 1-Wire temperature sensor

Edit the file /boot/uEnt.txt. Go to about line 19 and edit as shown:

17 ###
18 ###Additional custom capes
19 uboot_overlay_addr4=BB-W1-P9.12-00A0.dtbo
20 #uboot_overlay_addr5=<file5>.dtbo

Be sure to remove the # at the beginning of the line.

Reboot the bone:

bone$ reboot

Now run the following command to discover the serial number on your device:

bone$ ls /sys/bus/w1/devices/
28-00000114ef1b 28-00000128197d w1_bus_master1

I have two devices wired in parallel on the same P9_12 input. This shows the serial numbers for all the devices.

Finally, add the code below in to a file named w1.py, edit the path assigned to w1 so that the path points to
your device, and then run it.

Python

Listing 2.14: Reading a temperature with a DS18B20 (w1.py)

1 #!/usr/bin/env python
2 # //
3 # // w1.js
4 # // Read a Dallas 1-wire device on P9_12
5 # // Wiring: Attach gnd and 3.3V and data to P9_12

(continues on next page)

46 Chapter 2. Sensors

BeagleBone Cookbook

(continued from previous page)

6 # // Setup: Edit /boot/uEnv.txt to include:
7 # // uboot_overlay_addr4=BB-W1-P9.12-00A0.dtbo
8 # // See:
9 # //
10 import time
11

12 ms = 500 # Read time in ms
13 # Do ls /sys/bus/w1/devices and find the address of your device
14 addr = '28-00000d459c2c' # Must be changed for your device.
15 W1PATH ='/sys/bus/w1/devices/' + addr
16

17 f = open(W1PATH+'/temperature')
18

19 while True:
20 f.seek(0)
21 data = f.read()[:-1]
22 print(”temp (C) = ” + str(int(data)/1000))
23 time.sleep(ms/1000)

w1.py

JavaScript

Listing 2.15: Reading a temperature with a DS18B20 (w1.js)

1 #!/usr/bin/env node
2 //
3 // w1.js
4 // Read a Dallas 1-wire device on P9_12
5 // Wiring: Attach gnd and 3.3V and data to P9_12
6 // Setup: Edit /boot/uEnv.txt to include:
7 // uboot_overlay_addr4=BB-W1-P9.12-00A0.dtbo
8 // See:
9 //
10 const fs = require(”fs”);
11

12 const ms = 500 // Read time in ms
13 // Do ls /sys/bus/w1/devices and find the address of your device
14 const addr = '28-00000d459c2c'; // Must be changed for your device.
15 const W1PATH ='/sys/bus/w1/devices/' + addr;
16

17 // Read every ms
18 setInterval(readW1, ms);
19

20 function readW1() {
21 var data = fs.readFileSync(W1PATH+'/temperature').slice(0, -1);
22 console.log('temp (C) = ' + data/1000);
23 }

w1.js

bone$./w1.js
temp (C) = 28.625
temp (C) = 29.625
temp (C) = 30.5
temp (C) = 31.0
^C

Each temperature sensor has a unique serial number, so you can have several all sharing the same data line.

2.14. Reading Temperature via a Dallas 1-Wire Device 47

BeagleBone Cookbook

2.15 Playing and Recording Audio

Todo: Remove?

2.15.1 Problem

BeagleBone doesn’t have audio built in, but you want to play and record files.

2.15.2 Solution

One approach is to buy an audio cape, but another, possibly cheaper approach is to buy a USB audio adapter,
such as the one shown in A USB audio dongle.

Fig. 2.20: A USB audio dongle

Drivers for the Advanced Linux Sound Architecture (ALSA) may already installed on the Bone. If not, run the
following:

bone$ sudo apt install alsa-utils

You can list the recording and playing devices on your Bone by using aplay and arecord, as shown in Listing
the ALSA audio output and input devices on the Bone. BeagleBone Black has audio-out on the HDMI interface.
It’s listed as card 0 in Listing the ALSA audio output and input devices on the Bone. card 1 is my USB audio
adapter’s audio out.

48 Chapter 2. Sensors

http://bit.ly/1MrAJUR

BeagleBone Cookbook

2.16 Listing the ALSA audio output and input devices on the Bone

bone$ aplay -l
**** List of PLAYBACK Hardware Devices ****
card 0: Black [TI BeagleBone Black], device 0: HDMI nxp-hdmi-hifi-0 []
Subdevices: 1/1
Subdevice #0: subdevice #0

card 1: Device [C-Media USB Audio Device], device 0: USB Audio [USB Audio]
Subdevices: 1/1
Subdevice #0: subdevice #0

bone$ arecord -l
**** List of CAPTURE Hardware Devices ****
card 1: Device [C-Media USB Audio Device], device 0: USB Audio [USB Audio]
Subdevices: 1/1
Subdevice #0: subdevice #0

In the aplay output shown in Listing the ALSA audio output and input devices on the Bone, you can see the
USB adapter’s audio out. By default, the Bone will send audio to the HDMI. You can change that default by
creating a file in your home directory called ~/.asoundrc and adding the code in Change the default audio out
by putting this in ~/.asoundrc (audio.asoundrc) to it.

Listing 2.16: Change the default audio out by putting this in
~/.asoundrc (audio.asoundrc)

1 pcm.!default {
2 type plug
3 slave {
4 pcm ”hw:1,0”
5 }
6 }
7 ctl.!default {
8 type hw
9 card 1
10 }

audio.asoundrc

You can easily play .wav files with aplay:

bone$ aplay test.wav

You can play other files in other formats by installing mplayer:

bone$ sudo apt update
bone$ sudo apt install mplayer
bone$ mplayer test.mp3

2.16.1 Discussion

Adding the simple USB audio adapter opens up a world of audio I/O on the Bone.

2.16. Listing the ALSA audio output and input devices on the Bone 49

BeagleBone Cookbook

50 Chapter 2. Sensors

Chapter 3

Displays and Other Outputs

In this chapter, you will learn how to control physical hardware via BeagleBone Black’s general-purpose in-
put/output (GPIO) pins. The Bone has 65 GPIO pins that are brought out on two 46-pin headers, called P8 and
P9, as shown in The P8 and P9 GPIO headers.

Note: All the examples in the book assume you have cloned the Cookbook repository on git.beagleboard.org.
Go here Cloning the Cookbook Repository for instructions.

Fig. 3.1: The P8 and P9 GPIO headers

The purpose of this chapter is to give simple examples that show how to use various methods of output. Most
solutions require a breadboard and some jumper wires.

All these examples assume that you know how to edit a file (Editing Code Using Visual Studio Code) and run it,
either within Visual Studio Code (VSC) integrated development environment (IDE) or from the command line
(Getting to the Command Shell via SSH).

51

BeagleBone Cookbook

3.1 Toggling an Onboard LED

3.1.1 Problem

You want to know how to flash the four LEDs that are next to the Ethernet port on the Bone.

3.1.2 Solution

Locate the four onboard LEDs shown in The four USER LEDs. They are labeled USR0 through USR3, but we’ll
refer to them as the USER LEDs.

Fig. 3.2: The four USER LEDs

Place the code shown in Using an internal LED (internLED.py) in a file called internLED.py. You can do
this using VSC to edit files (as shown in Editing Code Using Visual Studio Code) or with a more traditional editor
(as shown in Editing a Text File from the GNU/Linux Command Shell).

Python

Listing 3.1: Using an internal LED (internLED.py)

1 #!/usr/bin/env python
2 # //////////////////////////////////////
3 # internLED.py
4 # Blinks A USR LED.
5 # Wiring:
6 # Setup:
7 # See:
8 # //////////////////////////////////////
9 import gpiod
10 import time
11

12 LED_CHIP = 'gpiochip1'
13 LED_LINE_OFFSET = [21] # USR0 run: gpioinfo | grep -i -e chip -e usr
14

15 chip = gpiod.Chip(LED_CHIP)
(continues on next page)

52 Chapter 3. Displays and Other Outputs

BeagleBone Cookbook

(continued from previous page)

16

17 lines = chip.get_lines(LED_LINE_OFFSET)
18 lines.request(consumer='internLED.py', type=gpiod.LINE_REQ_DIR_OUT)
19

20 state = 0 # Start with LED off
21 while True:
22 lines.set_values([state])
23 state = ~state # Toggle the state
24 time.sleep(0.25)

internLED.py

C

Listing 3.2: Using an internal LED (internLED.c)

1 // // //////////////////////////////////////
2 // # internLED.c
3 // # Blinks A USR LED.
4 // # Wiring:
5 // # Setup:
6 // # See:
7 // // //////////////////////////////////////
8 #include <gpiod.h>
9 #include <stdio.h>
10 #include <unistd.h>
11

12 #define CONSUMER ”internLED.c”
13

14 int main(int argc, char **argv)
15 {
16 int chipnumber = 1;
17 unsigned int line_num = 21; // usr0 LED, run: gpioinfo | grep -

↪→i -e chip -e usr
18 unsigned int val;
19 struct gpiod_chip *chip;
20 struct gpiod_line *line;
21 int i, ret;
22

23 chip = gpiod_chip_open_by_number(chipnumber);
24 line = gpiod_chip_get_line(chip, line_num);
25 ret = gpiod_line_request_output(line, CONSUMER, 0);
26

27 /* Blink */
28 val = 0;
29 while(1) {
30 ret = gpiod_line_set_value(line, val);
31 // printf(”Output %u on line #%u\n”, val, line_num);
32 usleep(100000); // Number of microseconds to␣

↪→sleep
33 val = !val;
34 }
35 }

internLED.c

In the bash command window, enter the following commands:

bone$ cd ~/beaglebone-cookbook-code/03displays
bone$./internLED.py

3.1. Toggling an Onboard LED 53

BeagleBone Cookbook

The USER0 LED should now be flashing.

3.2 Toggling an External LED

3.2.1 Problem

You want to connect your own external LED to the Bone.

3.2.2 Solution

Connect an LED to one of the GPIO pins using a series resistor to limit the current. To make this recipe, you will
need:

• Breadboard and jumper wires.

• 220 Ω to 470 Ω resistor.

• LED

Warning: The value of the current limiting resistor depends on the LED you are using. The Bone can drive
only 4 to 6 mA, so you might need a larger resistor to keep from pulling too much current. A 330 Ω or 470
Ω resistor might be better.

Diagram for using an external LED shows how you can wire the LED to pin 14 of the P9 header (P9_14). Every
circuit in this book (Wiring a Breadboard) assumes you have already wired the rightmost bus to ground (P9_1)
and the next bus to the left to the 3.3 V (P9_3) pins on the header. Be sure to get the polarity right on the LED.
The _short_ lead always goes to ground.

Fig. 3.3: Diagram for using an external LED

54 Chapter 3. Displays and Other Outputs

BeagleBone Cookbook

After you’ve wired it, start VSC (see Editing Code Using Visual Studio Code) and find the code shown in Code
for using an external LED (externLED.py). Notice that it looks very similar to the internLED code, in fact it only
differs in the line number (18 instead of 21). The built-in LEDs use the same GPIO interface as the GPIO pins.

Python

Listing 3.3: Code for using an external LED (externLED.py)

1 #!/usr/bin/env python
2 # //////////////////////////////////////
3 # externLED.py
4 # Blinks an external LED wired to P9_14.
5 # Wiring: P9_14 connects to the plus lead of an LED. The negative␣

↪→lead of the
6 # LED goes to a 220 Ohm resistor. The other lead of the␣

↪→resistor goes
7 # to ground
8 # Setup:
9 # See:
10 # //////////////////////////////////////
11 import gpiod
12 import time
13

14 LED_CHIP = 'gpiochip1'
15 LED_LINE_OFFSET = [18] # P9_14 run: gpioinfo | grep -i -e chip -e P9_14
16

17 chip = gpiod.Chip(LED_CHIP)
18

19 lines = chip.get_lines(LED_LINE_OFFSET)
20 lines.request(consumer='internLED.py', type=gpiod.LINE_REQ_DIR_OUT)
21

22 state = 0 # Start with LED off
23 while True:
24 lines.set_values([state])
25 state = ~state # Toggle the state
26 time.sleep(0.25)

externLED.py

C

Listing 3.4: Code for using an external LED (externLED.c)

1 // // //////////////////////////////////////
2 // # externLED.c
3 // Blinks an external LED wired to P9_14.
4 // Wiring: P9_14 connects to the plus lead of an LED. The negative lead of␣

↪→the
5 // LED goes to a 220 Ohm resistor. The other lead of the␣

↪→resistor goes
6 // to ground
7 // Setup:
8 // See:
9 // // //////////////////////////////////////
10 #include <gpiod.h>
11 #include <stdio.h>
12 #include <unistd.h>
13

14 #define CONSUMER ”internLED.c”
(continues on next page)

3.2. Toggling an External LED 55

BeagleBone Cookbook

(continued from previous page)

15

16 int main(int argc, char **argv)
17 {
18 int chipnumber = 1;
19 unsigned int line_num = 18; // P9_14, run: gpioinfo | grep -i -

↪→e chip -e P9_14
20 unsigned int val;
21 struct gpiod_chip *chip;
22 struct gpiod_line *line;
23 int i, ret;
24

25 chip = gpiod_chip_open_by_number(chipnumber);
26 line = gpiod_chip_get_line(chip, line_num);
27 ret = gpiod_line_request_output(line, CONSUMER, 0);
28

29 /* Blink */
30 val = 0;
31 while(1) {
32 ret = gpiod_line_set_value(line, val);
33 // printf(”Output %u on line #%u\n”, val, line_num);
34 usleep(100000); // Number of microseconds to␣

↪→sleep
35 val = !val;
36 }
37 }

externLED.c

Save your file and run the code as before (Toggling an Onboard LED).

3.3 Toggling a High-Voltage External Device

3.3.1 Problem

You want to control a device that runs at 120 V.

3.3.2 Solution

Working with 120 V can be tricky –even dangerous– if you aren’t careful. Here’s a safe way to do it.

To make this recipe, you will need:

• PowerSwitch Tail II

Diagram for wiring PowerSwitch Tail II shows how you can wire the PowerSwitch Tail II to pin P9_14.

After you’ve wired it, because this uses the same output pin as Toggling an External LED, you can run the same
code (Code for using an external LED (externLED.py)).

3.4 Fading an External LED

3.4.1 Problem

You want to change the brightness of an LED from the Bone.

56 Chapter 3. Displays and Other Outputs

BeagleBone Cookbook

Fig. 3.4: Diagram for wiring PowerSwitch Tail II

3.4.2 Solution

Use the Bone’s pulse width modulation (PWM) hardware to fade an LED. We’ll use the same circuit as before (Di-
agram for using an external LED). Find the code in Code for using an external LED (fadeLED.py) Next configure
the pins. We are using P9_14 so run:

bone$ config-pin P9_14 pwm

Then run it as before.

Python

Listing 3.5: Code for using an external LED (fadeLED.py)

1 #!/usr/bin/env python
2 # //
3 # // fadeLED.py
4 # // Blinks the P9_14 pin
5 # // Wiring:
6 # // Setup: config-pin P9_14 pwm
7 # // See:
8 # //
9 import time
10 ms = 20; # Fade time in ms
11

12 pwmPeriod = 1000000 # Period in ns
13 pwm = '1' # pwm to use
14 channel = 'a' # channel to use
15 PWMPATH='/dev/bone/pwm/'+pwm+'/'+channel
16 step = 0.02 # Step size
17 min = 0.02 # dimmest value
18 max = 1 # brightest value
19 brightness = min # Current brightness
20

21 f = open(PWMPATH+'/period', 'w')
(continues on next page)

3.4. Fading an External LED 57

BeagleBone Cookbook

(continued from previous page)

22 f.write(str(pwmPeriod))
23 f.close()
24

25 f = open(PWMPATH+'/enable', 'w')
26 f.write('1')
27 f.close()
28

29 f = open(PWMPATH+'/duty_cycle', 'w')
30 while True:
31 f.seek(0)
32 f.write(str(round(pwmPeriod*brightness)))
33 brightness += step
34 if(brightness >= max or brightness <= min):
35 step = -1 * step
36 time.sleep(ms/1000)
37

38 # | Pin | pwm | channel
39 # | P9_31 | 0 | a
40 # | P9_29 | 0 | b
41 # | P9_14 | 1 | a
42 # | P9_16 | 1 | b
43 # | P8_19 | 2 | a
44 # | P8_13 | 2 | b

fadeLED.py

JavaScript

Listing 3.6: Code for using an external LED (fadeLED.js)

1 #!/usr/bin/env node
2 //
3 // fadeLED.js
4 // Blinks the P9_14 pin
5 // Wiring:
6 // Setup: config-pin P9_14 pwm
7 // See:
8 //
9 const fs = require(”fs”);
10 const ms = '20'; // Fade time in ms
11

12 const pwmPeriod = '1000000'; // Period in ns
13 const pwm = '1'; // pwm to use
14 const channel = 'a'; // channel to use
15 const PWMPATH='/dev/bone/pwm/'+pwm+'/'+channel;
16 var step = 0.02; // Step size
17 const min = 0.02, // dimmest value
18 max = 1; // brightest value
19 var brightness = min; // Current brightness;
20

21

22 // Set the period in ns
23 fs.writeFileSync(PWMPATH+'/period', pwmPeriod);
24 fs.writeFileSync(PWMPATH+'/duty_cycle', pwmPeriod/2);
25 fs.writeFileSync(PWMPATH+'/enable', '1');
26

27 setInterval(fade, ms); // Step every ms
28

29 function fade() {
30 fs.writeFileSync(PWMPATH+'/duty_cycle',

(continues on next page)

58 Chapter 3. Displays and Other Outputs

BeagleBone Cookbook

(continued from previous page)

31 parseInt(pwmPeriod*brightness));
32 brightness += step;
33 if(brightness >= max || brightness <= min) {
34 step = -1 * step;
35 }
36 }
37

38 // | Pin | pwm | channel
39 // | P9_31 | 0 | a
40 // | P9_29 | 0 | b
41 // | P9_14 | 1 | a
42 // | P9_16 | 1 | b
43 // | P8_19 | 2 | a
44 // | P8_13 | 2 | b

fadeLED.js

The Bone has several outputs that can be use as pwm’s as shown in Table of PWM outputs. There are three
EHRPWM’s which each has a pair of pwm channels. Each pair must have the same period.

Fig. 3.5: Table of PWM outputs

The pwm’s are accessed through /dev/bone/pwm

bone$ cd /dev/bone/pwm
bone$ ls
0 1 2

Here we see three pwmchips that can be used, each has two channels. Explore one.

bone$ cd 1
bone$ ls
a b

(continues on next page)

3.4. Fading an External LED 59

BeagleBone Cookbook

(continued from previous page)

bone$ cd a
bone$ ls
capture duty_cycle enable period polarity power uevent

Here is where you can set the period and duty_cycle (in ns) and enable the pwm. Attach in LED to P9_14 and
if you set the period long enough you can see the LED flash.

bone$ echo 1000000000 > period
bone$ echo 500000000 > duty_cycle
bone$ echo 1 > enable

Your LED should now be flashing.

Headers to pwm channel mapping are the mapping I’ve figured out so far. I don’t know how to get to the timers.

Table 3.1: Headers to pwm channel mapping

Pin pwm channel
P9_31 0 a
P9_29 0 b
P9_14 1 a
P9_16 1 b
P8_19 2 a
P8_13 2 b

3.5 Writing to an LED Matrix

3.5.1 Problem

You have an I2C-based LED matrix to interface.

3.5.2 Solution

There are a number of nice LED matrices that allow you to control several LEDs via one interface. This solution
uses an Adafruit Bicolor 8x8 LED Square Pixel Matrix w/|I2C| Backpack.

To make this recipe, you will need:

• Breadboard and jumper wires

• Two 4.7 kΩ resistors.

• I2C LED matrix

The LED matrix is a 5 V device, but you can drive it from 3.3 V. Wire, as shown in Wiring an I2C LED matrix.

Measuring a Temperature shows how to use i2cdetect to discover the address of an I2C device.

Run the i2cdetect -y -r 2 command to discover the address of the display on I2C bus 2, as shown in Using I2C
command-line tools to discover the address of the display.

3.6 Using I2C command-line tools to discover the address of the
display

bone$ i2cdetect -y -r 2
0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --
(continues on next page)

60 Chapter 3. Displays and Other Outputs

http://www.adafruit.com/products/902

BeagleBone Cookbook

Fig. 3.6: Wiring an I2C LED matrix

(continued from previous page)

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- 49 -- -- -- -- -- --
50: -- -- -- -- UU UU UU UU -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: 70 -- -- -- -- -- -- --

Here, you can see a device at 0x49 and 0x70. I know I have a temperature sensor at 0x49, so the LED matrix
must be at 0x70.

Find the code in LED matrix display (matrixLEDi2c.py) and run it by using the following command:

bone$ pip install smbus # (Do this only once.)
bone$./matrixLEDi2c.py

3.7 LED matrix display (matrixLEDi2c.py)

Listing 3.7: LED matrix display (matrixLEDi2c.py)

1 #!/usr/bin/env python
2 # //
3 # // i2cTemp.py
4 # // Write an 8x8 Red/Green LED matrix.
5 # // Wiring: Attach to i2c as shown in text.
6 # // Setup: echo tmp101 0x49 > /sys/class/i2c-adapter/i2c-2/

↪→new_device
7 # // See: https://www.adafruit.com/product/902
8 # //
9 import smbus

(continues on next page)

3.7. LED matrix display (matrixLEDi2c.py) 61

BeagleBone Cookbook

(continued from previous page)

10 import time
11

12 bus = smbus.SMBus(2) # Use i2c bus 2 �
13 matrix = 0x70 # Use address 0x70 �
14 ms = 1; # Delay between images in ms
15

16 # The first byte is GREEN, the second is RED. �
17 smile = [0x00, 0x3c, 0x00, 0x42, 0x28, 0x89, 0x04, 0x85,
18 0x04, 0x85, 0x28, 0x89, 0x00, 0x42, 0x00, 0x3c
19]
20 frown = [0x3c, 0x00, 0x42, 0x00, 0x85, 0x20, 0x89, 0x00,
21 0x89, 0x00, 0x85, 0x20, 0x42, 0x00, 0x3c, 0x00
22]
23 neutral = [0x3c, 0x3c, 0x42, 0x42, 0xa9, 0xa9, 0x89, 0x89,
24 0x89, 0x89, 0xa9, 0xa9, 0x42, 0x42, 0x3c, 0x3c
25]
26

27 bus.write_byte_data(matrix, 0x21, 0) # Start oscillator (p10) �
28 bus.write_byte_data(matrix, 0x81, 0) # Disp on, blink off (p11)
29 bus.write_byte_data(matrix, 0xe7, 0) # Full brightness (page 15)
30

31 bus.write_i2c_block_data(matrix, 0, frown) # �
32 for fade in range(0xef, 0xe0, -1): # �
33 bus.write_byte_data(matrix, fade, 0)
34 time.sleep(ms/10)
35

36 bus.write_i2c_block_data(matrix, 0, neutral)
37 for fade in range(0xe0, 0xef, 1):
38 bus.write_byte_data(matrix, fade, 0)
39 time.sleep(ms/10)
40

41 bus.write_i2c_block_data(matrix, 0, smile)

matrixLEDi2c.py

① This line states which bus to use. The last digit gives the I2C bus number.

② This specifies the address of the LED matrix, 0x70 in our case.

③ This indicates which LEDs to turn on. The first byte is for the first column of green LEDs. In this
case, all are turned off. The next byte is for the first column of red LEDs. The hex 0x3c number is
0b00111100 in binary. This means the first two red LEDs are off, the next four are on, and the last
two are off. The next byte (0x00) says the second column of green LEDs are all off, the fourth byte
(0x42 = 0b01000010) says just two red LEDs are on, and so on. Declarations define four different
patterns to display on the LED matrix, the last being all turned off.

④ Send three commands to the matrix to get it ready to display.

⑤ Now, we are ready to display the various patterns. After each pattern is displayed, we sleep a
certain amount of time so that the pattern can be seen.

⑥ Finally, send commands to the LED matrix to set the brightness. This makes the display fade
out and back in again.

3.8 Driving a 5 V Device

3.8.1 Problem

You have a 5 V device to drive, and the Bone has 3.3 V outputs.

62 Chapter 3. Displays and Other Outputs

BeagleBone Cookbook

3.8.2 Solution

If you are lucky, you might be able to drive a 5 V device from the Bone’s 3.3 V output. Try it and see if it works.
If not, you need a level translator.

What you will need for this recipe:

• A PCA9306 level translator

• A 5 V power supply (if the Bone’s 5 V power supply isn’t enough)

The PCA9306 translates signals at 3.3 V to 5 V in both directions. It’s meant to work with I2C devices that have
a pull-up resistor, but it can work with anything needing translation.

Wiring a PCA9306 level translator to an LED matrix shows how to wire a PCA9306 to an LED matrix. The left is
the 3.3 V side and the right is the 5 V side. Notice that we are using the Bone’s built-in 5 V power supply.

Fig. 3.7: Wiring a PCA9306 level translator to an LED matrix

Note: If your device needs more current than the Bone’s 5 V power supply provides, you can wire in an
external power supply.

3.9 Writing to a NeoPixel LED String Using the PRUs

3.9.1 Problem

You have an Adafruit NeoPixel LED string or Adafruit NeoPixel LED matrix and want to light it up.

3.9.2 Solution

The PRU Cookbook has a nice discussion (WS2812 (NeoPixel) driver) on driving NeoPixels.

3.9. Writing to a NeoPixel LED String Using the PRUs 63

http://www.adafruit.com/products/1138
http://www.adafruit.com/products/1487
https://markayoder.github.io/PRUCookbook/05blocks/blocks.html#blocks_ws2812

BeagleBone Cookbook

Fig. 3.8: Wiring an Adafruit NeoPixel LED matrix to P9_29

3.10 Writing to a NeoPixel LED String Using LEDscape

3.11 Making Your Bone Speak

3.11.1 Problem

Your Bone wants to talk.

3.11.2 Solution

Just install the flite text-to-speech program:

bone$ sudo apt install flite

Then add the code from A program that talks (speak.js) in a file called speak.js and run.

Listing 3.8: A program that talks (speak.js)

1 #!/usr/bin/env node
2

3 var exec = require('child_process').exec;
4

5 function speakForSelf(phrase) {
6 {
7 exec('flite -t ”' + phrase + '”', function (error, stdout, stderr) {
8 console.log(stdout);
9 if(error) {
10 console.log('error: ' + error);
11 }
12 if(stderr) {
13 console.log('stderr: ' + stderr);

(continues on next page)

64 Chapter 3. Displays and Other Outputs

BeagleBone Cookbook

(continued from previous page)

14 }
15 });
16 }
17

18 speakForSelf(”Hello, My name is Borris. ” +
19 ”I am a BeagleBone Black, ” +
20 ”a true open hardware, ” +
21 ”community-supported embedded computer for developers and hobbyists. ” +
22 ”I am powered by a 1 Giga Hertz Sitara™ ARM® Cortex-A8 processor. ” +
23 ”I boot Linux in under 10 seconds. ” +
24 ”You can get started on development in ” +
25 ”less than 5 minutes with just a single USB cable.” +
26 ”Bark, bark!”
27);

speak.js

See Playing and Recording Audio to see how to use a USB audio dongle and set your default audio out.

3.11. Making Your Bone Speak 65

BeagleBone Cookbook

66 Chapter 3. Displays and Other Outputs

Chapter 4

Motors

One of the many fun things about embedded computers is that you can move physical things with motors. But
there are so many different kinds of motors (servo, stepper, DC), so how do you select the right one?

The type of motor you use depends on the type of motion you want:

• R/C or hobby servo motor
Can be quickly positioned at various absolute angles, but some don’t spin. In fact, many can turn
only about 180{deg}.

• Stepper motor
Spins and can also rotate in precise relative angles, such as turning 45°. Stepper motors come in
two types: bipolar (which has four wires) and unipolar (which has five or six wires).

• DC motor
Spins either clockwise or counter-clockwise and can have the greatest speed of the three. But a DC
motor can’t easily be made to turn to a given angle.

When you know which type of motor to use, interfacing is easy. This chapter shows how to interface with each
of these motors.

Note: Motors come in many sizes and types. This chapter presents some of the more popular types and
shows how they can interface easily to the Bone. If you need to turn on and off a 120 V motor, consider using
something like the PowerSwitch presented in Toggling a High-Voltage External Device.

Note: The Bone has built-in 3.3 V and 5 V supplies, which can supply enough current to drive some small
motors. Many motors, however, draw enough current that an external power supply is needed. Therefore, an
external 5 V power supply is listed as optional in many of the recipes.

Note: All the examples in the book assume you have cloned the Cookbook repository on git.beagleboard.org.
Go here Cloning the Cookbook Repository for instructions.

4.1 Controlling a Servo Motor

4.1.1 Problem

You want to use BeagleBone to control the absolute position of a servo motor.

67

BeagleBone Cookbook

4.1.2 Solution

We’ll use the pulse width modulation (PWM) hardware of the Bone to control a servo motor.

To make the recipe, you will need:

• Servo motor.

• Breadboard and jumper wires.

• 1 kΩ resistor (optional)

• 5 V power supply (optional)

The 1 kΩ resistor isn’t required, but it provides some protection to the general-purpose input/output (GPIO) pin
in case the servo fails and draws a large current.

Wire up your servo, as shown in Driving a servo motor with the 3.3 V power supply.

Note: There is no standard for how servo motor wires are colored. One of my servos is wired like Driving a
servo motor with the 3.3 V power supply red is 3.3 V, black is ground, and yellow is the control line. I have
another servo that has red as 3.3 V and ground is brown, with the control line being orange. Generally, though,
the 3.3 V is in the middle. Check the datasheet for your servo before wiring.

Fig. 4.1: Driving a servo motor with the 3.3 V power supply

The code for controlling the servo motor is in servoMotor.py, shown in Code for driving a servo motor
(servoMotor.py).

Python

Listing 4.1: Code for driving a servo motor (servoMotor.py)

1 #!/usr/bin/env python
2 # //

(continues on next page)

68 Chapter 4. Motors

BeagleBone Cookbook

(continued from previous page)

3 # // servoMotor.py
4 # // Drive a simple servo motor back and forth on P9_16 pin
5 # // Wiring:
6 # // Setup: config-pin P9_16 pwm
7 # // See:
8 # //
9 import time
10 import signal
11 import sys
12

13 pwmPeriod = '20000000' # Period in ns, (20 ms)
14 pwm = '1' # pwm to use
15 channel = 'b' # channel to use
16 PWMPATH='/dev/bone/pwm/'+pwm+'/'+channel
17 low = 0.8 # Smallest angle (in ms)
18 hi = 2.4 # Largest angle (in ms)
19 ms = 250 # How often to change position, in ms
20 pos = 1.5 # Current position, about middle ms)
21 step = 0.1 # Step size to next position
22

23 def signal_handler(sig, frame):
24 print('Got SIGINT, turning motor off')
25 f = open(PWMPATH+'/enable', 'w')
26 f.write('0')
27 f.close()
28 sys.exit(0)
29 signal.signal(signal.SIGINT, signal_handler)
30 print('Hit ^C to stop')
31

32 f = open(PWMPATH+'/period', 'w')
33 f.write(pwmPeriod)
34 f.close()
35 f = open(PWMPATH+'/enable', 'w')
36 f.write('1')
37 f.close()
38

39 f = open(PWMPATH+'/duty_cycle', 'w')
40 while True:
41 pos += step # Take a step
42 if(pos > hi or pos < low):
43 step *= -1
44 duty_cycle = str(round(pos*1000000)) # Convert ms to ns
45 # print('pos = ' + str(pos) + ' duty_cycle = ' + duty_cycle)
46 f.seek(0)
47 f.write(duty_cycle)
48 time.sleep(ms/1000)
49

50 # | Pin | pwm | channel
51 # | P9_31 | 0 | a
52 # | P9_29 | 0 | b
53 # | P9_14 | 1 | a
54 # | P9_16 | 1 | b
55 # | P8_19 | 2 | a
56 # | P8_13 | 2 | b

servoMotor.py

JavaScript

4.1. Controlling a Servo Motor 69

BeagleBone Cookbook

Listing 4.2: Code for driving a servo motor (servoMotor.js)

1 #!/usr/bin/env node
2 //
3 // servoMotor.js
4 // Drive a simple servo motor back and forth on P9_16 pin
5 // Wiring:
6 // Setup: config-pin P9_16 pwm
7 // See:
8 //
9 const fs = require(”fs”);
10

11 const pwmPeriod = '20000000'; // Period in ns, (20 ms)
12 const pwm = '1'; // pwm to use
13 const channel = 'b'; // channel to use
14 const PWMPATH='/dev/bone/pwm/'+pwm+'/'+channel;
15 const low = 0.8, // Smallest angle (in ms)
16 hi = 2.4, // Largest angle (in ms)
17 ms = 250; // How often to change position, in ms
18 var pos = 1.5, // Current position, about middle ms)
19 step = 0.1; // Step size to next position
20

21 console.log('Hit ^C to stop');
22 fs.writeFileSync(PWMPATH+'/period', pwmPeriod);
23 fs.writeFileSync(PWMPATH+'/enable', '1');
24

25 var timer = setInterval(sweep, ms);
26

27 // Sweep from low to hi position and back again
28 function sweep() {
29 pos += step; // Take a step
30 if(pos > hi || pos < low) {
31 step *= -1;
32 }
33 var dutyCycle = parseInt(pos*1000000); // Convert ms to ns
34 // console.log('pos = ' + pos + ' duty cycle = ' + dutyCycle);
35 fs.writeFileSync(PWMPATH+'/duty_cycle', dutyCycle);
36 }
37

38 process.on('SIGINT', function() {
39 console.log('Got SIGINT, turning motor off');
40 clearInterval(timer); // Stop the timer
41 fs.writeFileSync(PWMPATH+'/enable', '0');
42 });
43

44 // | Pin | pwm | channel
45 // | P9_31 | 0 | a
46 // | P9_29 | 0 | b
47 // | P9_14 | 1 | a
48 // | P9_16 | 1 | b
49 // | P8_19 | 2 | a
50 // | P8_13 | 2 | b

servoMotor.js

You need to configure the pin for PWM.

BeagleBone

bone$ cd ~/beaglebone-cookbook-code/04motors
bone$ config-pin P9_16 pwm

(continues on next page)

70 Chapter 4. Motors

BeagleBone Cookbook

(continued from previous page)

bone$./servoMotor.py

BeagleY-AI

Configuring the PWM on the BeagleY-AI takes a little more effort than on the Bone. First select which PWM you
want to use. https://pinout.beagleboard.io/pinout/pwm shows you have many to choose from.

Fig. 4.2: BeagleY-AI PWMs

Let’s use PWM0 on GPIO12. Note this is Hat pin 32 as shown in the figure (hat-32). The instructions at
beagley-ai-using-pwm give details on how to configure the PWM pin. A shorter version is given here.

To enable any of the PWM Pins, we have to modify the file: /boot/firmware/extlinux/extlinux.
conf. We can check the available list of Device Tree Overlays using the command:

debian@BeagleBone:~$ ls /boot/firmware/overlays/ | grep ”beagley-ai-pwm”
k3-am67a-beagley-ai-pwm-ecap0-gpio12.dtbo

(continues on next page)

4.1. Controlling a Servo Motor 71

https://pinout.beagleboard.io/pinout/pwm

BeagleBone Cookbook

(continued from previous page)

k3-am67a-beagley-ai-pwm-ecap1-gpio16.dtbo
k3-am67a-beagley-ai-pwm-ecap1-gpio21.dtbo
...

Add the line shown below to /boot/firmware/extlinux/extlinux.conf to load the gpio12 pwm
device tree overlay:

fdtoverlays /overlays/k3-am67a-beagley-ai-pwm-epwm0-ecap0-gpio12.dtbo

Your /boot/firmware/extlinux/extlinux.conf file should look something like:

label microSD (default)
kernel /Image
append console=ttyS2,115200n8 root=/dev/mmcblk1p3 ro rootfstype=ext4␣

↪→resume=/dev/mmcblk1p2 rootwait net.ifnames=0 quiet
fdtdir /
fdt /ti/k3-am67a-beagley-ai.dtb
fdtoverlays /overlays/k3-am67a-beagley-ai-pwm-ecap0-gpio12.dtbo
initrd /initrd.img

Now reboot you BeagleY-AI to load the overlay:

beagle$ sudo reboot

To configure HAT pin32 (GPIO12) PWM symlink pin using beagle-pwm-export execute the command
below,

beagle$ sudo beagle-pwm-export --pin hat-32

We’ve changed the PWM pin that’s being used so we need to modfiy servoMotor.py. Around line 16 you
will see:

PWMPATH=’/dev/bone/pwm/’+pwm+’/’+channel

Change it to:

PWMPATH=’/dev/hat/pwm/GPIO12’

Now run your code:

beagle$./servoMotor.py

Running the code causes the motor to move back and forth, progressing to successive positions between the
two extremes. You will need to press ^C (Ctrl-C) to stop the script.

4.2 Controlling a Servo with an Rotary Encoder

4.2.1 Problem

You have a rotary encoder from from chapter 2 rotary encoder example that you want to use to control a servo
motor.

4.2.2 Solution

Combine the code from rotaryEncoder.js and servoMotor.js.

bone$ config-pin P9_16 pwm
bone$ config-pin P8_11 eqep
bone$ config-pin P8_12 eqep
bone$./servoEncoder.py

72 Chapter 4. Motors

BeagleBone Cookbook

Listing 4.3: Code for driving a servo motor with a rotary en-
corder(servoEncoder.py)

1 #!/usr/bin/env python
2 # //
3 # // servoEncoder.py
4 # // Drive a simple servo motor using rotary encoder viq eQEP
5 # // Wiring: Servo on P9_16, rotary encoder on P8_11 and P8_12
6 # // Setup: config-pin P9_16 pwm
7 # // config-pin P8_11 eqep
8 # // config-pin P8_12 eqep
9 # // See:
10 # //
11 import time
12 import signal
13 import sys
14

15 # Set up encoder
16 eQEP = '2'
17 COUNTERPATH = '/dev/bone/counter/counter'+eQEP+'/count0'
18 maxCount = '180'
19

20 ms = 100 # Time between samples in ms
21

22 # Set the eEQP maximum count
23 fQEP = open(COUNTERPATH+'/ceiling', 'w')
24 fQEP.write(maxCount)
25 fQEP.close()
26

27 # Enable
28 fQEP = open(COUNTERPATH+'/enable', 'w')
29 fQEP.write('1')
30 fQEP.close()
31

32 fQEP = open(COUNTERPATH+'/count', 'r')
33

34 # Set up servo
35 pwmPeriod = '20000000' # Period in ns, (20 ms)
36 pwm = '1' # pwm to use
37 channel = 'b' # channel to use
38 PWMPATH='/dev/bone/pwm/'+pwm+'/'+channel
39 low = 0.6 # Smallest angle (in ms)
40 hi = 2.5 # Largest angle (in ms)
41 ms = 250 # How often to change position, in ms
42 pos = 1.5 # Current position, about middle ms)
43 step = 0.1 # Step size to next position
44

45 def signal_handler(sig, frame):
46 print('Got SIGINT, turning motor off')
47 f = open(PWMPATH+'/enable', 'w')
48 f.write('0')
49 f.close()
50 sys.exit(0)
51 signal.signal(signal.SIGINT, signal_handler)
52

53 f = open(PWMPATH+'/period', 'w')
54 f.write(pwmPeriod)
55 f.close()
56 f = open(PWMPATH+'/duty_cycle', 'w')
57 f.write(str(round(int(pwmPeriod)/2)))
58 f.close()
59 f = open(PWMPATH+'/enable', 'w')

(continues on next page)

4.2. Controlling a Servo with an Rotary Encoder 73

BeagleBone Cookbook

(continued from previous page)

60 f.write('1')
61 f.close()
62

63 print('Hit ^C to stop')
64

65 olddata = -1
66 while True:
67 fQEP.seek(0)
68 data = fQEP.read()[:-1]
69 # Print only if data changes
70 if data != olddata:
71 olddata = data
72 # print(”data = ” + data)
73 # # map 0-180 to low-hi
74 duty_cycle = -1*int(data)*(hi-low)/180.0 + hi
75 duty_cycle = str(int(duty_cycle*1000000)) # Convert␣

↪→from ms to ns
76 # print('duty_cycle = ' + duty_cycle)
77 f = open(PWMPATH+'/duty_cycle', 'w')
78 f.write(duty_cycle)
79 f.close()
80 time.sleep(ms/1000)
81

82 # Black OR Pocket
83 # eQEP0: P9.27 and P9.42 OR P1_33 and P2_34
84 # eQEP1: P9.33 and P9.35
85 # eQEP2: P8.11 and P8.12 OR P2_24 and P2_33
86

87 # AI
88 # eQEP1: P8.33 and P8.35
89 # eQEP2: P8.11 and P8.12 or P9.19 and P9.41
90 # eQEP3: P8.24 and P8.25 or P9.27 and P9.42
91

92 # | Pin | pwm | channel
93 # | P9_31 | 0 | a
94 # | P9_29 | 0 | b
95 # | P9_14 | 1 | a
96 # | P9_16 | 1 | b
97 # | P8_19 | 2 | a
98 # | P8_13 | 2 | b

servoEncoder.py

4.3 Controlling the Speed of a DC Motor

4.3.1 Problem

You have a DC motor (or a solenoid) and want a simple way to control its speed, but not the direction.

4.3.2 Solution

It would be nice if you could just wire the DC motor to BeagleBone Black and have it work, but it won’t. Most
motors require more current than the GPIO ports on the Bone can supply. Our solution is to use a transistor to
control the current to the bone.

Here we configure the encoder to returns value between 0 and 180 inclusive. This value is then mapped to a
value between min (0.6 ms) and max (2.5 ms). This number is converted from milliseconds and nanoseconds
(time 1000000) and sent to the servo motor via the pwm.

74 Chapter 4. Motors

BeagleBone Cookbook

Here’s what you will need:

• 3 V to 5 V DC motor

• Breadboard and jumper wires.

• 1 kΩ resistor.

• Transistor 2N3904.

• Diode 1N4001.

• Power supply for the motor (optional)

If you are using a larger motor (more current), you will need to use a larger transistor.

Wire your breadboard as shown in Wiring a DC motor to spin one direction.

Fig. 4.3: Wiring a DC motor to spin one direction

Use the code in Driving a DC motor in one direction (dcMotor.py) to run the motor.

Python

Listing 4.4: Driving a DC motor in one direction (dcMotor.py)

1 #!/usr/bin/env python
2 # //
3 # // dcMotor.js
4 # // This is an example of driving a DC motor
5 # // Wiring:
6 # // Setup: config-pin P9_16 pwm
7 # // See:
8 # //
9 import time
10 import signal
11 import sys
12

(continues on next page)

4.3. Controlling the Speed of a DC Motor 75

BeagleBone Cookbook

(continued from previous page)

13 def signal_handler(sig, frame):
14 print('Got SIGINT, turning motor off')
15 f = open(PWMPATH+'/enable', 'w')
16 f.write('0')
17 f.close()
18 sys.exit(0)
19 signal.signal(signal.SIGINT, signal_handler)
20

21 pwmPeriod = '1000000' # Period in ns
22 pwm = '1' # pwm to use
23 channel = 'b' # channel to use
24 PWMPATH='/dev/bone/pwm/'+pwm+'/'+channel
25

26 low = 0.05 # Slowest speed (duty cycle)
27 hi = 1 # Fastest (always on)
28 ms = 100 # How often to change speed, in ms
29 speed = 0.5 # Current speed
30 step = 0.05 # Change in speed
31

32 f = open(PWMPATH+'/duty_cycle', 'w')
33 f.write('0')
34 f.close()
35 f = open(PWMPATH+'/period', 'w')
36 f.write(pwmPeriod)
37 f.close()
38 f = open(PWMPATH+'/enable', 'w')
39 f.write('1')
40 f.close()
41

42 f = open(PWMPATH+'/duty_cycle', 'w')
43 while True:
44 speed += step
45 if(speed > hi or speed < low):
46 step *= -1
47 duty_cycle = str(round(speed*1000000)) # Convert ms to ns
48 f.seek(0)
49 f.write(duty_cycle)
50 time.sleep(ms/1000)

dcMotor.py

JavaScript

Listing 4.5: Driving a DC motor in one direction (dcMotor.js)

1 #!/usr/bin/env node
2 //
3 // dcMotor.js
4 // This is an example of driving a DC motor
5 // Wiring:
6 // Setup: config-pin P9_16 pwm
7 // See:
8 //
9 const fs = require(”fs”);
10

11 const pwmPeriod = '1000000'; // Period in ns
12 const pwm = '1'; // pwm to use
13 const channel = 'b'; // channel to use
14 const PWMPATH='/dev/bone/pwm/'+pwm+'/'+channel;
15

(continues on next page)

76 Chapter 4. Motors

BeagleBone Cookbook

(continued from previous page)

16 const low = 0.05, // Slowest speed (duty cycle)
17 hi = 1, // Fastest (always on)
18 ms = 100; // How often to change speed, in ms
19 var speed = 0.5, // Current speed;
20 step = 0.05; // Change in speed
21

22 // fs.writeFileSync(PWMPATH+'/export', pwm); // Export the pwm channel
23 // Set the period in ns, first 0 duty_cycle,
24 fs.writeFileSync(PWMPATH+'/duty_cycle', '0');
25 fs.writeFileSync(PWMPATH+'/period', pwmPeriod);
26 fs.writeFileSync(PWMPATH+'/duty_cycle', pwmPeriod/2);
27 fs.writeFileSync(PWMPATH+'/enable', '1');
28

29 timer = setInterval(sweep, ms);
30

31 function sweep() {
32 speed += step;
33 if(speed > hi || speed < low) {
34 step *= -1;
35 }
36 fs.writeFileSync(PWMPATH+'/duty_cycle', parseInt(pwmPeriod*speed));
37 // console.log('speed = ' + speed);
38 }
39

40 process.on('SIGINT', function() {
41 console.log('Got SIGINT, turning motor off');
42 clearInterval(timer); // Stop the timer
43 fs.writeFileSync(PWMPATH+'/enable', '0');
44 });

dcMotor.js

4.4 See Also

How do you change the direction of the motor? See Controlling the Speed and Direction of a DC Motor.

4.5 Controlling the Speed and Direction of a DC Motor

4.5.1 Problem

You would like your DC motor to go forward and backward.

4.5.2 Solution

Use an H-bridge to switch the terminals on the motor so that it will run both backward and forward. We’ll use
the L293D a common, single-chip H-bridge.

Here’s what you will need:

• 3 V to 5 V motor.

• Breadboard and jumper wires.

• L293D H-Bridge IC.

• Power supply for the motor (optional)

4.4. See Also 77

BeagleBone Cookbook

Lay out your breadboard as shown in Driving a DC motor with an H-bridge. Ensure that the L293D is positioned
correctly. There is a notch on one end that should be pointed up.

Fig. 4.4: Driving a DC motor with an H-bridge

The code in Code for driving a DC motor with an H-bridge (h-bridgeMotor.js) (h-bridgeMotor.js) looks
much like the code for driving the DC motor with a transistor (Driving a DC motor in one direction (dcMotor.js)).
The additional code specifies which direction to spin the motor.

Listing 4.6: Code for driving a DC motor with an H-bridge (h-
bridgeMotor.js)

1 #!/usr/bin/env node
2

3 // This example uses an H-bridge to drive a DC motor in two directions
4

5 var b = require('bonescript');
6

7 var enable = 'P9_21'; // Pin to use for PWM speed control
8 in1 = 'P9_15',
9 in2 = 'P9_16',
10 step = 0.05, // Change in speed
11 min = 0.05, // Min duty cycle
12 max = 1.0, // Max duty cycle
13 ms = 100, // Update time, in ms
14 speed = min; // Current speed;
15

16 b.pinMode(enable, b.ANALOG_OUTPUT, 6, 0, 0, doInterval);
17 b.pinMode(in1, b.OUTPUT);
18 b.pinMode(in2, b.OUTPUT);
19

20 function doInterval(x) {
21 if(x.err) {
22 console.log('x.err = ' + x.err);
23 return;
24 }
25 timer = setInterval(sweep, ms);

(continues on next page)

78 Chapter 4. Motors

BeagleBone Cookbook

(continued from previous page)

26 }
27

28 clockwise(); // Start by going clockwise
29

30 function sweep() {
31 speed += step;
32 if(speed > max || speed < min) {
33 step *= -1;
34 step>0 ? clockwise() : counterClockwise();
35 }
36 b.analogWrite(enable, speed);
37 console.log('speed = ' + speed);
38 }
39

40 function clockwise() {
41 b.digitalWrite(in1, b.HIGH);
42 b.digitalWrite(in2, b.LOW);
43 }
44

45 function counterClockwise() {
46 b.digitalWrite(in1, b.LOW);
47 b.digitalWrite(in2, b.HIGH);
48 }
49

50 process.on('SIGINT', function() {
51 console.log('Got SIGINT, turning motor off');
52 clearInterval(timer); // Stop the timer
53 b.analogWrite(enable, 0); // Turn motor off
54 });

h-bridgeMotor.js

4.6 Driving a Bipolar Stepper Motor

4.6.1 Problem

You want to drive a stepper motor that has four wires.

4.6.2 Solution

Use an L293D H-bridge. The bipolar stepper motor requires us to reverse the coils, so we need to use an
H-bridge.

Here’s what you will need:

• Breadboard and jumper wires.

• 3 V to 5 V bipolar stepper motor.

• L293D H-Bridge IC.

Wire as shown in Bipolar stepper motor wiring.

Use the code in Driving a bipolar stepper motor (bipolarStepperMotor.py) to drive the motor.

Listing 4.7: Driving a bipolar stepper motor (bipolarStepperMotor.py)

1 #!/usr/bin/env python
2 import time

(continues on next page)

4.6. Driving a Bipolar Stepper Motor 79

BeagleBone Cookbook

Fig. 4.5: Bipolar stepper motor wiring

(continued from previous page)

3 import os
4 import signal
5 import sys
6

7 # Motor is attached here
8 # controller = [”P9_11”, ”P9_13”, ”P9_15”, ”P9_17”];
9 # controller = [”30”, ”31”, ”48”, ”5”]
10 # controller = [”P9_14”, ”P9_16”, ”P9_18”, ”P9_22”];
11 controller = [”50”, ”51”, ”4”, ”2”]
12 states = [[1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]]
13 statesHiTorque = [[1,1,0,0], [0,1,1,0], [0,0,1,1], [1,0,0,1]]
14 statesHalfStep = [[1,0,0,0], [1,1,0,0], [0,1,0,0], [0,1,1,0],
15 [0,0,1,0], [0,0,1,1], [0,0,0,1], [1,0,0,1]]
16

17 curState = 0 # Current state
18 ms = 100 # Time between steps, in ms
19 maxStep = 22 # Number of steps to turn before turning around
20 minStep = 0 # minimum step to turn back around on
21

22 CW = 1 # Clockwise
23 CCW = -1
24 pos = 0 # current position and direction
25 direction = CW
26 GPIOPATH=”/sys/class/gpio”
27

28 def signal_handler(sig, frame):
29 print('Got SIGINT, turning motor off')
30 for i in range(len(controller)) :
31 f = open(GPIOPATH+”/gpio”+controller[i]+”/value”, ”w”)
32 f.write('0')
33 f.close()
34 sys.exit(0)
35 signal.signal(signal.SIGINT, signal_handler)
36 print('Hit ^C to stop')
37

(continues on next page)

80 Chapter 4. Motors

BeagleBone Cookbook

(continued from previous page)

38 def move():
39 global pos
40 global direction
41 global minStep
42 global maxStep
43 pos += direction
44 print(”pos: ” + str(pos))
45 # Switch directions if at end.
46 if (pos >= maxStep or pos <= minStep) :
47 direction *= -1
48 rotate(direction)
49

50 # This is the general rotate
51 def rotate(direction) :
52 global curState
53 global states
54 # print(”rotate(%d)”, direction);
55 # Rotate the state according to the direction of rotation
56 curState += direction
57 if(curState >= len(states)) :
58 curState = 0;
59 elif(curState<0) :
60 curState = len(states)-1
61 updateState(states[curState])
62

63 # Write the current input state to the controller
64 def updateState(state) :
65 global controller
66 print(state)
67 for i in range(len(controller)) :
68 f = open(GPIOPATH+”/gpio”+controller[i]+”/value”, ”w”)
69 f.write(str(state[i]))
70 f.close()
71

72 # Initialize motor control pins to be OUTPUTs
73 for i in range(len(controller)) :
74 # Make sure pin is exported
75 if (not os.path.exists(GPIOPATH+”/gpio”+controller[i])):
76 f = open(GPIOPATH+”/export”, ”w”)
77 f.write(pin)
78 f.close()
79 # Make it an output pin
80 f = open(GPIOPATH+”/gpio”+controller[i]+”/direction”, ”w”)
81 f.write(”out”)
82 f.close()
83

84 # Put the motor into a known state
85 updateState(states[0])
86 rotate(direction)
87

88 # Rotate
89 while True:
90 move()
91 time.sleep(ms/1000)

bipolarStepperMotor.py

When you run the code, the stepper motor will rotate back and forth.

4.7 Driving a Unipolar Stepper Motor

4.7. Driving a Unipolar Stepper Motor 81

BeagleBone Cookbook

4.7.1 Problem

You want to drive a stepper motor that has five or six wires.

4.7.2 Solution

If your stepper motor has five or six wires, it’s a unipolar stepper and is wired differently than the bipolar.
Here, we’ll use a ULN2003 Darlington Transistor Array IC to drive the motor.

Here’s what you will need:

• Breadboard and jumper wires.

• 3 V to 5 V unipolar stepper motor.

• ULN2003 Darlington Transistor Array IC.

Wire, as shown in Unipolar stepper motor wiring.

Note: The IC in Unipolar stepper motor wiring is illustrated upside down from the way it is usually displayed.

That is, the notch for pin 1 is on the bottom. This made drawing the diagram much cleaner.

Also, notice the banded wire running the P9_7 (5 V) to the UL2003A. The stepper motor I’m using runs better
at 5 V, so I’m using the Bone’s 5 V power supply. The signal coming from the GPIO pins is 3.3 V, but the U2003A
will step them up to 5 V to drive the motor.

Fig. 4.6: Unipolar stepper motor wiring

The code for driving the motor is in unipolarStepperMotor.js however, it is almost identical to the
bipolar stepper code (Driving a bipolar stepper motor (bipolarStepperMotor.py)), so Changes to bipolar code
to drive a unipolar stepper motor (unipolarStepperMotor.js.diff) shows only the lines that you need to change.

Listing 4.8: Changes to bipolar code to drive a unipolar stepper motor
(unipolarStepperMotor.py.diff)

1 # controller = [”P9_11”, ”P9_13”, ”P9_15”, ”P9_17”]
2 controller = [”30”, ”31”, ”48”, ”5”]

(continues on next page)

82 Chapter 4. Motors

BeagleBone Cookbook

(continued from previous page)

3 states = [[1,1,0,0], [0,1,1,0], [0,0,1,1], [1,0,0,1]]
4 curState = 0 // Current state
5 ms = 100 // Time between steps, in ms
6 max = 200 // Number of steps to turn before turning around

unipolarStepperMotor.py.diff

Listing 4.9: Changes to bipolar code to drive a unipolar stepper motor
(unipolarStepperMotor.js.diff)

1 # var controller = [”P9_11”, ”P9_13”, ”P9_15”, ”P9_17”];
2 controller = [”30”, ”31”, ”48”, ”5”]
3 var states = [[1,1,0,0], [0,1,1,0], [0,0,1,1], [1,0,0,1]];
4 var curState = 0; // Current state
5 var ms = 100, // Time between steps, in ms
6 max = 200, // Number of steps to turn before turning around

unipolarStepperMotor.js.diff

The code in this example makes the following changes:

• The states are different. Here, we have two pins high at a time.

• The time between steps (ms) is shorter, and the number of steps per direction (max) is bigger. The
unipolar stepper I’m using has many more steps per rotation, so I need more steps to make it go around.

4.7. Driving a Unipolar Stepper Motor 83

BeagleBone Cookbook

84 Chapter 4. Motors

Chapter 5

Beyond the Basics

In Basics, you learned how to set up BeagleBone Black, and Sensors, Displays and Other Outputs, and Motors
showed how to interface to the physical world. The remainder of the book moves into some more exciting
advanced topics, and this chapter gets you ready for them.

The recipes in this chapter assume that you are running Linux on your host computer (Selecting an OS for
Your Development Host Computer) and are comfortable with using Linux. We continue to assume that you are
logged in as debian on your Bone.

5.1 Running Your Bone Standalone

5.1.1 Problem

You want to use BeagleBone Black as a desktop computer with keyboard, mouse, and an HDMI display.

5.1.2 Solution

The Bone comes with USB and a microHDMI output. All you need to do is connect your keyboard, mouse, and
HDMI display to it.

To make this recipe, you will need:

• Standard HDMI cable and female HDMI-to-male microHDMI adapter, or

• MicroHDMI-to-HDMI adapter cable

• HDMI monitor

• USB keyboard and mouse

• Powered USB hub

Note: The microHDMI adapter is nice because it allows you to use a regular HDMI cable with the Bone.
However, it will block other ports and can damage the Bone if you aren’t careful. The microHDMI-to-HDMI
cable won’t have these problems.

Tip: You can also use an HDMI-to-DVI cable and use your Bone with a DVI-D display.

The adapter looks something like Female HDMI-to-male microHDMI adapter.

Plug the small end into the microHDMI input on the Bone and plug your HDMI cable into the other end of the
adapter and your monitor. If nothing displays on your Bone, reboot.

85

BeagleBone Cookbook

Fig. 5.1: Female HDMI-to-male microHDMI adapter

86 Chapter 5. Beyond the Basics

BeagleBone Cookbook

If nothing appears after the reboot, edit the /boot/uEnv.txt file. Search for the line containing dis-
able_uboot_overlay_video=1 and make sure it’s commented out:

###Disable auto loading of virtual capes (emmc/video/wireless/adc)
#disable_uboot_overlay_emmc=1
#disable_uboot_overlay_video=1

Then reboot.

The /boot/uEnv.txt file contains a number of configuration commands that are executed at boot time.
The # character is used to add comments; that is, everything to the right of a +# is ignored by the Bone and
is assumed to be for humans to read. In the previous example, ###Disable auto loading is a comment that
informs us the next line(s) are for disabling things. Two disable_uboot_overlay commands follow. Both should
be commented-out and won’t be executed by the Bone.

Why not just remove the line? Later, you might decide you need more general-purpose in-
put/output (GPIO) pins and don’t need the HDMI display. If so, just remove the # from the dis-
able_uboot_overlay_video=1 command. If you had completely removed the line earlier, you would
have to look up the details somewhere to re-create it.

When in doubt, comment-out don’t delete.

Note: If you want to re-enable the HDMI audio, just comment-out the line you added.

The Bone has only one USB port, so you will need to get either a keyboard with a USB hub or a USB hub. Plug
the USB hub into the Bone and then plug your keyboard and mouse in to the hub. You now have a Beagle
workstation no host computer is needed.

Tip: A powered hub is recommended because USB can supply only 500 mA, and you’ll want to plug many
things into the Bone.

This recipe disables the HDMI audio, which allows the Bone to try other resolutions. If this fails, see Beagle-
BoneBlack HDMI for how to force the Bone’s resolution to match your monitor.

5.2 Selecting an OS for Your Development Host Computer

5.2.1 Problem

Your project needs a host computer, and you need to select an operating system (OS) for it.

5.2.2 Solution

For projects that require a host computer, we assume that you are running Linux Ubuntu 22.04 LTS. You can
be running either a native installation, through Windows Subsystem for Linux, via a virtual machine such as
VirtualBox, or in the cloud (Microsoft Azure or Amazon Elastic Compute Cloud, EC2, for example).

Recently I’ve been preferring Windows Subsystem for Linux.

5.3 Getting to the Command Shell via SSH

5.3.1 Problem

You want to connect to the command shell of a remote Bone from your host computer.

5.2. Selecting an OS for Your Development Host Computer 87

http://bit.ly/1GEPcOH
http://bit.ly/1GEPcOH
http://bit.ly/1wXOwkw
https://docs.microsoft.com/en-us/windows/wsl/
https://www.virtualbox.org/
https://portal.azure.com/
http://aws.amazon.com/ec2/
https://docs.microsoft.com/en-us/windows/wsl/

BeagleBone Cookbook

5.3.2 Solution

Running Python and JavaScript Applications from Visual Studio Code shows how to run shell commands in the
Visual Studio Code bash tab. However, the Bone has Secure Shell (SSH) enabled right out of the box, so you
can easily connect by using the following command to log in as user debian, (note the $ at the end of the
prompt):

host$ ssh debian@192.168.7.2
Warning: Permanently added '192.168.7.2' (ED25519) to the list of known␣
↪→hosts.
Debian GNU/Linux 11

BeagleBoard.org Debian Bullseye IoT Image 2023-06-03
Support: https://bbb.io/debian
default username:password is [debian:temppwd]

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Thu Jun 8 14:02:40 2023 from 192.168.7.1
bone$

5.3.3 Default password

debian has the default password temppwd. It’s best to change the password:

bone$ password
Changing password for debian.
(current) UNIX password:
Enter new UNIX password:
Retype new UNIX password:
password: password updated successfully

5.4 Removing the Message of the Day

5.4.1 Problem

Every time you login a long message is displayed that you don’t need to see.

5.4.2 Solution

The contents of the files /etc/motd, /etc/issue and /etc/issue.net are displayed everytime you long it. You can
prevent them from being displayed by moving them elsewhere.

bone$ sudo mv /etc/motd /etc/motd.orig
bone$ sudo mv /etc/issue /etc/issue.orig
bone$ sudo mv /etc/issue.net /etc/issue.net.orig

Now, the next time you ssh in they won’t be displayed.

88 Chapter 5. Beyond the Basics

BeagleBone Cookbook

5.5 Getting to the Command Shell via the Virtual Serial Port

5.5.1 Problem

You want to connect to the command shell of a remote Bone from your host computer without using SSH.

5.5.2 Solution

Sometimes, you can’t connect to the Bone via SSH, but you have a network working over USB to the Bone. There
is a way to access the command line to fix things without requiring extra hardware. (Viewing and Debugging
the Kernel and u-boot Messages at Boot Time shows a way that works even if you don’t have a network working
over USB, but it requires a special serial-to-USB cable.)

Note: This method doesn’t work with WSL.

First, check to ensure that the serial port is there. On the host computer, run the following command:

host$ ls -ls /dev/ttyACM0
0 crw-rw---- 1 root dialout 166, 0 Jun 19 11:47 /dev/ttyACM0

/dev/ttyACM0 is a serial port on your host computer that the Bone creates when it boots up. The letters crw-
rw—- show that you can’t access it as a normal user. However, you can access it if you are part of dialout
group. See if you are in the dialout group:

host$ groups
yoder adm tty uucp dialout cdrom sudo dip plugdev lpadmin sambashare

Looks like I’m already in the group, but if you aren’t, just add yourself to the group:

host$ sudo adduser $USER dialout

You have to run adduser only once. Your host computer will remember the next time you boot up. Now, install
and run the screen command:

host$ sudo apt install screen
host$ screen /dev/ttyACM0 115200
Debian GNU/Linux 7 beaglebone ttyGS0

default username:password is [debian:temppwd]

Support/FAQ: http://elinux.org/Beagleboard:BeagleBoneBlack_Debian

The IP Address for usb0 is: 192.168.7.2
beaglebone login:

The /dev/ttyACM0 parameter specifies which serial port to connect to, and 115200 tells the speed of the
connection. In this case, it’s 115,200 bits per second.

5.6 Viewing and Debugging the Kernel and u-boot Messages at Boot
Time

5.6.1 Problem

You want to see the messages that are logged by BeagleBone Black as it comes to life.

5.5. Getting to the Command Shell via the Virtual Serial Port 89

BeagleBone Cookbook

5.6.2 Solution

There is no network in place when the Bone first boots up, so Getting to the Command Shell via SSH and Getting
to the Command Shell via the Virtual Serial Port won’t work. This recipe uses some extra hardware (FTDI cable)
to attach to the Bone’s console serial port.

To make this recipe, you will need:

• 3.3 V FTDI cable

Warning: Be sure to get a 3.3 V FTDI cable (shown in FTDI cable), because the 5 V cables won’t work.

Tip: The Bone’s Serial Debug J1 connector has Pin 1 connected to ground, Pin 4 to receive, and Pin 5 to
transmit. The other pins are not attached.

Fig. 5.2: FTDI cable

Look for a small triangle at the end of the FTDI cable (FTDI connector). It’s often connected to the black wire.

BeagleBone

Next, look for the FTDI pins of the Bone (labeled J1 on the Bone), shown in FTDI pins for the FTDI connector.
They are next to the P9 header and begin near pin 20. There is a white dot near P9_20.

Plug the FTDI connector into the FTDI pins, being sure to connect the triangle pin on the connector to the
white dot pin of the FTDI connector.

90 Chapter 5. Beyond the Basics

BeagleBone Cookbook

Fig. 5.3: FTDI connector

Fig. 5.4: FTDI pins for the FTDI connector

5.6. Viewing and Debugging the Kernel and u-boot Messages at Boot Time 91

BeagleBone Cookbook

BeagleY-AI FTDI Cable

When using the BeagleY-AI, if you already have an FTDI cable, all you’ll need is a JST SH Compatible 1mm Pitch
3 Pin to Male Headers Cable (https://www.adafruit.com/product/5755).

Fig. 5.5: JST SH Compatible 1mm Pitch 3 Pin to Male Headers Cable

Attach the JST cable to the FTDI cable as shown below.

BeagleY-AI Debug Probe

If you don’t have an FTDI cable, you can use a Raspberry Pi Debug Probe or similar serial (USB to UART) adapter.
Connect your UART debug probe to BeagleY-AI as shown in the image below. After making the connection you
can use command line utility like tio on Linux or Putty on any operating system. Check beagley-ai-headless
for more information.

Now, run the following commands on your host computer:

host$ ls -ls /dev/ttyUSB0
0 crw-rw---- 1 root dialout 188, 0 Jun 19 12:43 /dev/ttyUSB0
host$ sudo adduser $USER dialout
host$ screen /dev/ttyUSB0 115200
Debian GNU/Linux 7 beaglebone ttyO0

default username:password is [debian:temppwd]

Support/FAQ: http://elinux.org/Beagleboard:BeagleBoneBlack_Debian

(continues on next page)

92 Chapter 5. Beyond the Basics

https://www.adafruit.com/product/5755
https://www.raspberrypi.com/documentation/microcontrollers/debug-probe.html

BeagleBone Cookbook

Fig. 5.6: JST to FDTI connection

5.6. Viewing and Debugging the Kernel and u-boot Messages at Boot Time 93

BeagleBone Cookbook

Fig. 5.7: Connecting Raspberry Pi debug probe to BeagleY-AI

(continued from previous page)

The IP Address for usb0 is: 192.168.7.2
beaglebone login:

Note: Your screen might initially be blank. Press Enter a couple times to see the login prompt.

5.7 Verifying You Have the Latest Version of the OS on Your Bone
from the Shell

5.7.1 Problem

You are logged in to your Bone with a command prompt and want to know what version of the OS you are
running.

5.7.2 Solution

Log in to your Bone and enter the following command:

bone$ cat /etc/dogtag
BeagleBoard.org Debian Bullseye IoT Image 2023-06-03

Verifying You Have the Latest Version of the OS on Your Bone shows how to open the /etc/dogtag file to
see the OS version. See Running the Latest Version of the OS on Your Bone if you need to update your OS.

5.8 Controlling the Bone Remotely with a VNC

94 Chapter 5. Beyond the Basics

BeagleBone Cookbook

5.8.1 Problem

You want to access the BeagleBone’s graphical desktop from your host computer.

5.8.2 Solution

Install and run a Virtual Network Computing (VNC) server:

bone$ sudo apt update
bone$ sudo apt install tightvncserver
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following additional packages will be installed:
...
update-alternatives: using /usr/bin/Xtightvnc to provide /usr/bin/Xvnc␣
↪→(Xvnc) in auto mode
update-alternatives: using /usr/bin/tightvncpasswd to provide /usr/bin/
↪→vncpasswd (vncpasswd) in auto mode
Processing triggers for libc-bin (2.31-13+deb11u6) ...

bone$ tightvncserver

You will require a password to access your desktops.

Password:
Verify:
Would you like to enter a view-only password (y/n)? n
xauth: (argv):1: bad display name ”beaglebone:1” in ”add” command

New 'X' desktop is beaglebone:1

Creating default startup script /home/debian/.vnc/xstartup
Starting applications specified in /home/debian/.vnc/xstartup
Log file is /home/debian/.vnc/beagleboard:1.log

To connect to the Bone, you will need to run a VNC client. There are many to choose from. Remmina Remote
Desktop Client is already installed on Ubuntu. Start and select the new remote desktop file button (Creating a
new remote desktop file in Remmina Remote Desktop Client).

Give your connection a name, being sure to select “Remmina VNC Plugin” Also, be sure to add :1 after the
server address, as shown in Configuring the Remmina Remote Desktop Client. This should match the :1 that
was displayed when you started vncserver.

Click Connect to start graphical access to your Bone, as shown in The Remmina Remote Desktop Client showing
the BeagleBone desktop.

Tip: You might need to resize the VNC screen on your host to see the bottom menu bar on your Bone.

Note: You need to have X Windows installed and running for the VNC to work. Here’s how to install it. This
needs some 250M of disk space and 19 minutes to install.

bone$ bone$ sudo apt install bbb.io-xfce4-desktop
bone$ sdo cp /etc/bbb.io/templates/fbdev.xorg.conf /etc/X11/xorg.conf
bone$ startxfce4
/usr/bin/startxfce4: Starting X server
/usr/bin/startxfce4: 122: exec: xinit: not found

5.8. Controlling the Bone Remotely with a VNC 95

BeagleBone Cookbook

Fig. 5.8: Creating a new remote desktop file in Remmina Remote Desktop Client

5.9 Learning Typical GNU/Linux Commands

5.9.1 Problem

There are many powerful commands to use in Linux. How do you learn about them?

5.9.2 Solution

Common Linux commands lists many common Linux commands.

Table 5.1: Common Linux commands

Command Action
pwd show current directory
cd change current directory
ls list directory contents
chmod change file permissions
chown change file ownership
cp copy files
mv move files
rm remove files
mkdir make directory
rmdir remove directory
cat dump file contents
less progressively dump file
vi edit file (complex)
nano edit file (simple)
head trim dump to top

continues on next page

96 Chapter 5. Beyond the Basics

BeagleBone Cookbook

Table 5.1 – continued from previous page
tail trim dump to bottom
echo print/dump value
env dump environment variables
export set environment variable
history dump command history
grep search dump for strings
man get help on command
apropos show list of man pages
find search for files
tar create/extract file archives
gzip compress a file
gunzip decompress a file
du show disk usage
df show disk free space
mount mount disks
tee write dump to file in parallel
hexdump readable binary dumps
whereis locates binary and source files

5.10 Editing a Text File from the GNU/Linux Command Shell

5.10.1 Problem

You want to run an editor to change a file.

5.10.2 Solution

The Bone comes with a number of editors. The simplest to learn is nano. Just enter the following command:

bone$ nano file

You are now in nano (Editing a file with nano). You can’t move around the screen using the mouse, so use the
arrow keys. The bottom two lines of the screen list some useful commands. Pressing ^G (Ctrl-G) will display
more useful commands. ^X (Ctrl-X) exits nano and gives you the option of saving the file.

Tip: By default, the file you create will be saved in the directory from which you opened nano.

Many other text editors will run on the Bone. vi, vim, emacs, and even eclipse are all supported. See Installing
Additional Packages from the Debian Package Feed to learn if your favorite is one of them.

5.11 Establishing an Ethernet-Based Internet Connection

5.11.1 Problem

You want to connect your Bone to the Internet using the wired network connection.

5.11.2 Solution

Plug one end of an Ethernet patch cable into the RJ45 connector on the Bone (see The RJ45 port on the Bone)
and the other end into your home hub/router. The yellow and green link lights on both ends should begin to

5.10. Editing a Text File from the GNU/Linux Command Shell 97

BeagleBone Cookbook

Fig. 5.9: Configuring the Remmina Remote Desktop Client

98 Chapter 5. Beyond the Basics

BeagleBone Cookbook

Fig. 5.10: The Remmina Remote Desktop Client showing the BeagleBone desktop

5.11. Establishing an Ethernet-Based Internet Connection 99

BeagleBone Cookbook

Fig. 5.11: Editing a file with nano

flash.

If your router is already configured to run DHCP (Dynamical Host Configuration Protocol), it will automatically
assign an IP address to the Bone.

Warning: It might take a minute or two for your router to detect the Bone and assign the IP address.

To find the IP address, open a terminal window and run the ip command:

bone$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group␣
↪→default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group␣
↪→default qlen 1000

link/ether c8:a0:30:a6:26:e8 brd ff:ff:ff:ff:ff:ff
inet 10.0.5.144/24 brd 10.0.5.255 scope global dynamic eth0

valid_lft 80818sec preferred_lft 80818sec
inet6 fe80::caa0:30ff:fea6:26e8/64 scope link

valid_lft forever preferred_lft forever
3: usb0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state␣
↪→UP group default qlen 1000

link/ether c2:3f:44:bb:41:0f brd ff:ff:ff:ff:ff:ff
inet 192.168.7.2/24 brd 192.168.7.255 scope global usb0

valid_lft forever preferred_lft forever
inet6 fe80::c03f:44ff:febb:410f/64 scope link

(continues on next page)

100 Chapter 5. Beyond the Basics

BeagleBone Cookbook

Fig. 5.12: The RJ45 port on the Bone

(continued from previous page)

valid_lft forever preferred_lft forever
4: usb1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state␣
↪→UP group default qlen 1000

link/ether 76:7e:49:46:1b:78 brd ff:ff:ff:ff:ff:ff
inet 192.168.6.2/24 brd 192.168.6.255 scope global usb1

valid_lft forever preferred_lft forever
inet6 fe80::747e:49ff:fe46:1b78/64 scope link

valid_lft forever preferred_lft forever
5: can0: <NOARP,ECHO> mtu 16 qdisc no-op state DOWN group default qlen 10

link/can
6: can1: <NOARP,ECHO> mtu 16 qdisc no-op state DOWN group default qlen 10

link/can

My Bone is connected to the Internet in two ways: via the RJ45 connection (eth0) and via the USB cable (usb0).
The inet field shows that my Internet address is 10.0.5.144 for the RJ45 connector.

On my university campus, you must register your MAC address before any device will work on the network.
The HWaddr field gives the MAC address. For eth0, it’s c8:a0:30:a6:26:e8.

The IP address of your Bone can change. If it’s been assigned by DHCP, it can change at any time. The MAC
address, however, never changes; it is assigned to your ethernet device when it’s manufactured.

Warning: When a Bone is connected to some networks it becomes visible to the world. If you don’t
secure your Bone, the world will soon find it. See Default password and Setting Up a Firewall

On many home networks, you will be behind a firewall and won’t be as visible.

5.12 Establishing a WiFi-Based Internet Connection

5.12.1 Problem

You want BeagleBone Black to talk to the Internet using a USB wireless adapter.

5.12. Establishing a WiFi-Based Internet Connection 101

BeagleBone Cookbook

5.12.2 Solution

Tip: For the correct instructions for the image you are using, go to latest-images and click on the image you
are using.

I’m running Debian 11.x (Bullseye), the top one, on the BeagleBone Black.

Fig. 5.13: Latest Beagle Images

Scroll to the top of the page and you’ll see instructions on setting up Wifi. The instructions here are based on
using networkctl.

Todo: is this up to date?

Several WiFi adapters work with the Bone. Check WiFi Adapters for the latest list.

To make this recipe, you will need:

• USB Wifi adapter

• 5 V external power supply

102 Chapter 5. Beyond the Basics

http://forum.beagleboard.org/tag/latest-images
http://bit.ly/1EbEwUo

BeagleBone Cookbook

Fig. 5.14: Instructions for setting up your network.

5.12. Establishing a WiFi-Based Internet Connection 103

BeagleBone Cookbook

Warning: Most adapters need at least 1 A of current to run, and USB supplies only 0.5 A, so be sure to
use an external power supply. Otherwise, you will experience erratic behavior and random crashes.

First, plug in the WiFi adapter and the 5 V external power supply and reboot.

Then run lsusb to ensure that your Bone found the adapter:

bone$ lsusb
Bus 001 Device 002: ID 0bda:8176 Realtek Semiconductor Corp. RTL8188CUS 802.
↪→11n
WLAN Adapter
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Note: There is a well-known bug in the Bone’s 3.8 kernel series that prevents USB devices from being discov-
ered when hot-plugged, which is why you should reboot. Newer kernels should address this issue.

Todo: update

Next, run networkctl to find your adapter’s name. Mine is called wlan0, but you might see other names, such
as ra0.

bone$ networkctl
IDX LINK TYPE OPERATIONAL SETUP
1 lo loopback carrier unmanaged
2 eth0 ether no-carrier configuring
3 usb0 gadget routable configured
4 usb1 gadget routable configured
5 can0 can off unmanaged
6 can1 can off unmanaged
7 wlan0 wlan routable configured
8 SoftAp0 wlan routable configured

8 links listed.

If no name appears, try ip a:

bone$ ip a
...
2: eth0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast state␣
↪→DOWN group default qlen 1000

link/ether c8:a0:30:a6:26:e8 brd ff:ff:ff:ff:ff:ff
3: usb0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state␣
↪→UP group default qlen 1000

link/ether c2:3f:44:bb:41:0f brd ff:ff:ff:ff:ff:ff
inet 192.168.7.2/24 brd 192.168.7.255 scope global usb0

valid_lft forever preferred_lft forever
inet6 fe80::c03f:44ff:febb:410f/64 scope link

valid_lft forever preferred_lft forever
...
7: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group␣
↪→default qlen 1000

link/ether 64:69:4e:7e:5c:e4 brd ff:ff:ff:ff:ff:ff
inet 10.0.7.21/24 brd 10.0.7.255 scope global dynamic wlan0

valid_lft 85166sec preferred_lft 85166sec
inet6 fe80::6669:4eff:fe7e:5ce4/64 scope link

valid_lft forever preferred_lft forever

(continues on next page)

104 Chapter 5. Beyond the Basics

BeagleBone Cookbook

(continued from previous page)

Next edit the configuration file */etc/wpa_supplicant/wpa_supplicant-wlan0.
↪→conf*.

bone$ sudo nano /etc/wpa_supplicant/wpa_supplicant-wlan0.conf

In the file you’ll see:

ctrl_interface=DIR=/run/wpa_supplicant GROUP=netdev
update_config=1
#country=US

network={
ssid=”Your SSID”
psk=”Your Password”

}

Change the ssid and psk entries for your network. Save your file, then run:

bone$ sudo systemctl restart systemd-networkd
bone$ ip a
bone$ ping -c2 google.com
PING google.com (142.250.191.206) 56(84) bytes of data.
64 bytes from ord38s31-in-f14.1e100.net (142.250.191.206): icmp_seq=1␣
↪→ttl=115 time=19.5 ms
64 bytes from ord38s31-in-f14.1e100.net (142.250.191.206): icmp_seq=2␣
↪→ttl=115 time=19.4 ms

--- google.com ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 19.387/19.450/19.513/0.063 ms

wlan0 should now have an ip address and you should be on the network. If not, try rebooting.

5.13 Sharing the Host’s Internet Connection over USB

Todo: Test this

5.13.1 Problem

Your host computer is connected to the Bone via the USB cable, and you want to run the network between the
two.

5.13.2 Solution

Establishing an Ethernet-Based Internet Connection shows how to connect BeagleBone Black to the Internet
via the RJ45 Ethernet connector. This recipe shows a way to connect without using the RJ45 connector.

A network is automatically running between the Bone and the host computer at boot time using the USB. The
host’s IP address is 192.168.7.1 and the Bone’s is 192.168.7.2. Although your Bone is talking to your host, it
can’t reach the Internet in general, nor can the Internet reach it. On one hand, this is good, because those who
are up to no good can’t access your Bone. On the other hand, your Bone can’t reach the rest of the world.

5.13. Sharing the Host’s Internet Connection over USB 105

BeagleBone Cookbook

Letting your bone see the world: setting up IP masquerading

You need to set up IP masquerading on your host and configure your Bone to use it. Here is a solution that
works with a host computer running Linux. Add the code in Code for IP Masquerading (ipMasquerade.sh) to a
file called ipMasquerade.sh on your host computer.

Listing 5.1: Code for IP Masquerading (ipMasquerade.sh)

1 #!/bin/bash
2 # These are the commands to run on the host to set up IP
3 # masquerading so the Bone can access the Internet through
4 # the USB connection.
5 # This configures the host, run ./setDNS.sh to configure the Bone.
6 # Inspired by http://thoughtshubham.blogspot.com/2010/03/
7 # internet-over-usb-otg-on-beagleboard.html
8

9 if [$# -eq 0] ; then
10 echo ”Usage: $0 interface (such as eth0 or wlan0)”
11 exit 1
12 fi
13

14 interface=$1
15 hostAddr=192.168.7.1
16 beagleAddr=192.168.7.2
17 ip_forward=/proc/sys/net/ipv4/ip_forward
18

19 if [`cat $ip_forward` == 0]
20 then
21 echo ”You need to set IP forwarding. Edit /etc/sysctl.conf using:”
22 echo ”$ sudo nano /etc/sysctl.conf”
23 echo ”and uncomment the line \”net.ipv4.ip_forward=1\””
24 echo ”to enable forwarding of packets. Then run the following:”
25 echo ”$ sudo sysctl -p”
26 exit 1
27 else
28 echo ”IP forwarding is set on host.”
29 fi
30 # Set up IP masquerading on the host so the bone can reach the outside world
31 sudo iptables -t nat -A POSTROUTING -s $beagleAddr -o $interface -j␣

↪→MASQUERADE

ipMasquerade.sh

Then, on your host, run the following commands:

host$ chmod +x ipMasquerade.sh
host$./ipMasquerade.sh eth0

This will direct your host to take requests from the Bone and send them to eth0. If your host is using a wireless
connection, change eth0 to wlan0.

Now let’s set up your host to instruct the Bone what to do. Add the code in Code for setting the DNS on the
Bone (setDNS.sh) to setDNS.sh on your host computer.

Listing 5.2: Code for setting the DNS on the Bone (setDNS.sh)

1 #!/bin/bash
2 # These are the commands to run on the host so the Bone
3 # can access the Internet through the USB connection.
4 # Run ./ipMasquerade.sh the first time. It will set up the host.
5 # Run this script if the host is already set up.
6 # Inspired by http://thoughtshubham.blogspot.com/2010/03/internet-over-usb-

↪→otg-on-beagleboard.html
(continues on next page)

106 Chapter 5. Beyond the Basics

BeagleBone Cookbook

(continued from previous page)

7

8 hostAddr=192.168.7.1
9 beagleAddr=${1:-192.168.7.2}
10

11 # Save the /etc/resolv.conf on the Beagle in case we mess things up.
12 ssh root@$beagleAddr ”mv -n /etc/resolv.conf /etc/resolv.conf.orig”
13 # Create our own resolv.conf
14 cat - << EOF > /tmp/resolv.conf
15 # This is installed by ./setDNS.sh on the host
16

17 EOF
18

19 TMP=/tmp/nmcli
20 # Look up the nameserver of the host and add it to our resolv.conf
21 # From: http://askubuntu.com/questions/197036/how-to-know-what-dns-am-i-

↪→using-in-ubuntu-12-04
22 # Use nmcli dev list for older version nmcli
23 # Use nmcli dev show for newer version nmcli
24 nmcli dev show > $TMP
25 if [$? -ne 0]; then # $? is the return code, if not 0 something bad␣

↪→happened.
26 echo ”nmcli failed, trying older 'list' instead of 'show'”
27 nmcli dev list > $TMP
28 if [$? -ne 0]; then
29 echo ”nmcli failed again, giving up...”
30 exit 1
31 fi
32 fi
33

34 grep IP4.DNS $TMP | sed 's/IP4.DNS\[.\]:/nameserver/' >> /tmp/resolv.conf
35

36 scp /tmp/resolv.conf root@$beagleAddr:/etc
37

38 # Tell the beagle to use the host as the gateway.
39 ssh root@$beagleAddr ”/sbin/route add default gw $hostAddr” || true

setDNS.sh

Then, on your host, run the following commands:

host$ chmod +x setDNS.sh
host$./setDNS.sh
host$ ssh -X root@192.168.7.2
bone$ ping -c2 google.com
PING google.com (216.58.216.96) 56(84) bytes of data.
64 bytes from ord30s22....net (216.58.216.96): icmp_req=1 ttl=55 time=7.49 ms
64 bytes from ord30s22....net (216.58.216.96): icmp_req=2 ttl=55 time=7.62 ms

--- google.com ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1002ms
rtt min/avg/max/mdev = 7.496/7.559/7.623/0.107 ms

This will look up what Domain Name System (DNS) servers your host is using and copy them to the right place
on the Bone. The ping command is a quick way to verify your connection.

Letting the world see your bone: setting up port forwarding

Now your Bone can access the world via the USB port and your host computer, but what if you have a web
server on your Bone that you want to access from the world? The solution is to use port forwarding from your
host. Web servers typically listen to port 80. First, look up the IP address of your host:

5.13. Sharing the Host’s Internet Connection over USB 107

BeagleBone Cookbook

Todo: switch to ip address

host$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group␣
↪→default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1280 qdisc mq state UP group␣
↪→default qlen 1000

link/ether 00:15:5d:7c:e8:dc brd ff:ff:ff:ff:ff:ff
inet 172.31.43.210/20 brd 172.31.47.255 scope global eth0

valid_lft forever preferred_lft forever
inet6 fe80::215:5dff:fe7c:e8dc/64 scope link

valid_lft forever preferred_lft forever

It’s the number following inet, which in my case is 172.31.43.210.

Tip: If you are on a wireless network, find the IP address associated with wlan0.

Then run the following, using your host’s IP address:

Todo: check this iptables, convert to ufw

host$ sudo iptables -t nat -A PREROUTING -p tcp -s 0/0 \
-d 172.31.43.210 --dport 1080 -j DNAT --to 192.168.7.2:80

Now browse to your host computer at port 1080. That is, if your host’s IP address is 123.456.789.0, enter
123.456.789.0:1080. The :1080 specifies what port number to use. The request will be forwarded to the
server on your Bone listening to port 80. (I used 1080 here, in case your host is running a web server of its
own on port 80.)

5.14 Setting Up a Firewall

5.14.1 Problem

You have put your Bone on the network and want to limit which IP addresses can access it.

5.14.2 Solution

How-To Geek has a great posting on how do use ufw, the “uncomplicated firewall”. Check out How to Secure
Your Linux Server with a UFW Firewall. I’ll summarize the initial setup here.

First install and check the status:

bone$ sudo apt update
bone$ sudo apt install ufw
bone$ sudo ufw status
Status: inactive

Now turn off everything coming in and leave on all outgoing. Note, this won’t take effect until ufw is enabled.

108 Chapter 5. Beyond the Basics

https://www.howtogeek.com/
https://www.howtogeek.com/devops/how-to-secure-your-linux-server-with-a-ufw-firewall/
https://www.howtogeek.com/devops/how-to-secure-your-linux-server-with-a-ufw-firewall/

BeagleBone Cookbook

bone$ sudo ufw default deny incoming
bone$ sudo ufw default allow outgoing

Don’t enable yet, make sure ssh still has access

bone$ sudo ufw allow 22

Just to be sure, you can install nmap on your host computer to see what ports are currently open.

host$ sudo apt update
host$ sudo apt install nmap
host$ nmap 192.168.7.2
Starting Nmap 7.80 (https://nmap.org) at 2022-07-09 13:37 EDT
Nmap scan report for bone (192.168.7.2)
Host is up (0.014s latency).
Not shown: 997 closed ports
PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
3000/tcp open ppp

Nmap done: 1 IP address (1 host up) scanned in 0.19 seconds

Currently there are three ports visible: 22, 80 and 3000 (visual studio code). Now turn on the firewall and see
what happens.

bone$ sudo ufw enable
Command may disrupt existing ssh connections. Proceed with operation (y|n)? y
Firewall is active and enabled on system startup

host$ nmap 192.168.7.2
Starting Nmap 7.80 (https://nmap.org) at 2022-07-09 13:37 EDT
Nmap scan report for bone (192.168.7.2)
Host is up (0.014s latency).
Not shown: 999 closed ports
PORT STATE SERVICE
22/tcp open ssh

Nmap done: 1 IP address (1 host up) scanned in 0.19 seconds

Only port 22 (ssh) is accessible now.

The firewall will remain on, even after a reboot. Disable it now if you don’t want it on.

bone$ sudo ufw disable
Firewall stopped and disabled on system startup

See the How-To Geek article for more examples.

5.15 Installing Additional Packages from the Debian Package Feed

5.15.1 Problem

You want to do more cool things with your BeagleBone by installing more programs.

5.15. Installing Additional Packages from the Debian Package Feed 109

https://www.howtogeek.com/devops/how-to-secure-your-linux-server-with-a-ufw-firewall/

BeagleBone Cookbook

5.15.2 Solution

Warning: Your Bone needs to be on the network for this to work. See Establishing an Ethernet-Based Inter-
net Connection, Establishing a WiFi-Based Internet Connection, or Sharing the Host’s Internet Connection
over USB.

The easiest way to install more software is to use apt:

bone$ sudo apt update
bone$ sudo apt install ”name of software”

A sudo is necessary since you aren’t running as root. The first command downloads package lists from various
repositories and updates them to get information on the newest versions of packages and their dependencies.
(You need to run it only once a week or so.) The second command fetches the software and installs it and all
packages it depends on.

How do you find out what software you can install? Try running this:

bone$ apt-cache pkgnames | sort > /tmp/list
bone$ wc /tmp/list
67974 67974 1369852 /tmp/list

bone$ less /tmp/list

The first command lists all the packages that apt knows about and sorts them and stores them in/tmp/list.
The second command shows why you want to put the list in a file. The wc command counts the number of
lines, words, and characters in a file. In our case, there are over 67,000 packages from which we can choose!
The less command displays the sorted list, one page at a time. Press the space bar to go to the next page.
Press q to quit.

Suppose that you would like to install an online dictionary (dict). Just run the following command:

bone$ sudo apt install dict

Now you can run dict.

5.16 Removing Packages Installed with apt

5.16.1 Problem

You’ve been playing around and installing all sorts of things with apt and now you want to clean things up a
bit.

5.16.2 Solution

apt has a remove option, so you can run the following command:

bone$ sudo apt remove dict
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages were automatically installed and are no longer␣
↪→required:
libmaa3 librecode0 recode
Use 'apt autoremove' to remove them.
The following packages will be REMOVED:
dict

(continues on next page)

110 Chapter 5. Beyond the Basics

BeagleBone Cookbook

(continued from previous page)

0 upgraded, 0 newly installed, 1 to remove and 27 not upgraded.
After this operation, 164 kB disk space will be freed.
Do you want to continue [Y/n]? y

5.17 Copying Files Between the Onboard Flash and the MicroSD
Card

5.17.1 Problem

You want to move files between the onboard flash and the microSD card.

5.17.2 Solution

First, make sure your Beagle has eMMC. Run lsblk.

beagle:~$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
mmcblk1 179:0 0 3.6G 0 disk
└─mmcblk1p1 179:1 0 3.6G 0 part
mmcblk1boot0 179:256 0 2M 1 disk
mmcblk1boot1 179:512 0 2M 1 disk
mmcblk0 179:768 0 7.4G 0 disk
└─mmcblk0p1 179:769 0 7.4G 0 part /

If the results show mmcblk0 and mmcblk1 like above, you have eMMC and can do the rest of this recipe. If
your results are like below, you don’t have eMMC.

beagle:~$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
mmcblk1 179:0 0 7.5G 0 disk
├─mmcblk1p1 179:1 0 256M 0 part /boot/firmware
└─mmcblk1p2 179:2 0 7.3G 0 part /

If you booted from the microSD card, run the following command:

bone$ df -h
Filesystem Size Used Avail Use% Mounted on
rootfs 7.2G 2.0G 4.9G 29% /
udev 10M 0 10M 0% /dev
tmpfs 100M 1.9M 98M 2% /run
/dev/mmcblk0p2 7.2G 2.0G 4.9G 29% /
tmpfs 249M 0 249M 0% /dev/shm
tmpfs 249M 0 249M 0% /sys/fs/cgroup
tmpfs 5.0M 0 5.0M 0% /run/lock
tmpfs 100M 0 100M 0% /run/user
bone$ ls /dev/mmcblk*
/dev/mmcblk0 /dev/mmcblk0p2 /dev/mmcblk1boot0 /dev/mmcblk1p1
/dev/mmcblk0p1 /dev/mmcblk1 /dev/mmcblk1boot1

The df command shows what partitions are already mounted. The line /dev/mmcblk0p2 7.2G 2.0G
4.9G 29% / shows that mmcblk0 partition p2 is mounted as /, the root file system. The general rule is
that the media you’re booted from (either the onboard flash or the microSD card) will appear asmmcblk0. The
second partition (p2) is the root of the file system.

The ls command shows what devices are available to mount. Because mmcblk0 is already mounted,
/dev/mmcblk1p1 must be the other media that we need to mount. Run the following commands to mount
it:

5.17. Copying Files Between the Onboard Flash and the MicroSD Card 111

BeagleBone Cookbook

Todo: update

bone$ cd /mnt
bone$ sudo mkdir onboard
bone$ ls onboard
bone$ sudo mount /dev/mmcblk1p1 onboard/
bone$ ls onboard
bin etc lib mnt proc sbin sys var
boot home lost+found nfs-uEnv.txt root selinux tmp
dev ID.txt media opt run srv usr

The cd command takes us to a place in the file systemwhere files are commonly mounted. Themkdir command
creates a new directory (onboard) to be amount point. The ls command shows there is nothing inonboard.
The mount command makes the contents of the onboard flash accessible. The next ls shows there now are
files in onboard. These are the contents of the onboard flash, which can be copied to and from like any other
file.

This same process should also work if you have booted from the onboard flash. When you are done with the
onboard flash, you can unmount it by using this command:

bone$ sudo umount /mnt/onboard

5.18 Freeing Space on the Onboard Flash or MicroSD Card

5.18.1 Problem

You are starting to run out of room on your microSD card (or onboard flash) and have removed several packages
you had previously installed (Removing Packages Installed with apt), but you still need to free up more space.

5.18.2 Solution

To free up space, you can remove preinstalled packages or discover big files to remove.

Removing preinstalled packages

You might not need a few things that come preinstalled in the Debian image, including such things as OpenCV,
the Chromium web browser, and some documentation.

Note: The Chromium web browser is the open source version of Google’s Chrome web browser. Unless you
are using the Bone as a desktop computer, you can probably remove it.

Here’s how you can remove these:

bone$ sudo apt remove bb-node-red-installer (171M)
bone$ sudo apt autoremove
bone$ sudo -rf /usr/share/doc (116M)
bone$ sudo -rf /usr/share/man (19M)

Discovering big files

The du (disk usage) command offers a quick way to discover big files:

112 Chapter 5. Beyond the Basics

BeagleBone Cookbook

bone$ sudo du -shx /*
12M /bin
160M /boot
0 /dev
23M /etc
835M /home
4.0K /ID.txt
591M /lib
16K /lost+found
4.0K /media
8.0K /mnt
664M /opt
du: cannot access '/proc/1454/task/1454/fd/4': No such file or directory
du: cannot access '/proc/1454/task/1454/fdinfo/4': No such file or directory
du: cannot access '/proc/1454/fd/3': No such file or directory
du: cannot access '/proc/1454/fdinfo/3': No such file or directory
0 /proc
1.4M /root
1.4M /run
13M /sbin
4.0K /srv
0 /sys
48K /tmp
1.6G /usr
1.9G /var

If you booted from the microSD card, du lists the usage of the microSD. If you booted from the onboard flash,
it lists the onboard flash usage.

The -s option summarizes the results rather than displaying every file. -h prints it in _human_ form–that is,
using M and K postfixes rather than showing lots of digits. The /* specifies to run it on everything in the top-
level directory. It looks like a couple of things disappeared while the command was running and thus produced
some error messages.

Tip: For more help, try du –help.

The /var directory appears to be the biggest user of space at 1.9 GB. You can then run the following command
to see what’s taking up the space in /var:

bone$ sudo du -sh /var/*
4.0K /var/backups
76M /var/cache
93M /var/lib
4.0K /var/local
0 /var/lock
751M /var/log
4.0K /var/mail
4.0K /var/opt
0 /var/run
16K /var/spool
987M /var/swap
28K /var/tmp
16K /var/www

A more interactive way to explore your disk usage is by installing ncdu (ncurses disk usage):

bone$ sudo apt install ncdu
bone$ ncdu /

After a moment, you’ll see the following:

5.18. Freeing Space on the Onboard Flash or MicroSD Card 113

BeagleBone Cookbook

ncdu 1.15.1 ~ Use the arrow keys to navigate, press ? for help
--- / --
. 1.9 GiB [##########] /var

1.5 GiB [########] /usr
835.0 MiB [####] /home
663.5 MiB [###] /opt
590.9 MiB [###] /lib
159.0 MiB [] /boot

. 22.8 MiB [] /etc
12.5 MiB [] /sbin
11.1 MiB [] /bin

. 1.4 MiB [] /run

. 40.0 KiB [] /tmp
! 16.0 KiB [] /lost+found

8.0 KiB [] /mnt
e 4.0 KiB [] /srv
! 4.0 KiB [] /root
e 4.0 KiB [] /media

4.0 KiB [] ID.txt
. 0.0 B [] /sys
. 0.0 B [] /proc

0.0 B [] /dev

Total disk usage: 5.6 GiB Apparent size: 5.5 GiB Items: 206148

ncdu is a character-based graphics interface to du. You can now use your arrow keys to navigate the file
structure to discover where the big unused files are. Press ? for help.

Warning: Be careful not to press the d key, because it’s used to delete a file or directory.

5.19 Using C to Interact with the Physical World

5.19.1 Problem

You want to use C on the Bone to talk to the world.

5.19.2 Solution

The C solution isn’t as simple as the JavaScript or Python solution, but it does work and is much faster. The
approach is the same, write to the /sys/class/gpio files.

Listing 5.3: Use C to blink an LED (blinkLED.c)

1 //
2 // blinkLED.c
3 // Blinks the P9_14 pin
4 // Wiring:
5 // Setup:
6 // See:
7 //
8 #include <stdio.h>
9 #include <string.h>
10 #include <unistd.h>
11 #define MAXSTR 100
12 // Look up P9.14 using gpioinfo | grep -e chip -e P9.14. chip 1, line 18␣

↪→maps to 50
(continues on next page)

114 Chapter 5. Beyond the Basics

BeagleBone Cookbook

(continued from previous page)

13 int main() {
14 FILE *fp;
15 char pin[] = ”50”;
16 char GPIOPATH[] = ”/sys/class/gpio”;
17 char path[MAXSTR] = ””;
18

19 // Make sure pin is exported
20 snprintf(path, MAXSTR, ”%s%s%s”, GPIOPATH, ”/gpio”, pin);
21 if (!access(path, F_OK) == 0) {
22 snprintf(path, MAXSTR, ”%s%s”, GPIOPATH, ”/export”);
23 fp = fopen(path, ”w”);
24 fprintf(fp, ”%s”, pin);
25 fclose(fp);
26 }
27

28 // Make it an output pin
29 snprintf(path, MAXSTR, ”%s%s%s%s”, GPIOPATH, ”/gpio”, pin, ”/direction”);
30 fp = fopen(path, ”w”);
31 fprintf(fp, ”out”);
32 fclose(fp);
33

34 // Blink every .25 sec
35 int state = 0;
36 snprintf(path, MAXSTR, ”%s%s%s%s”, GPIOPATH, ”/gpio”, pin, ”/value”);
37 fp = fopen(path, ”w”);
38 while (1) {
39 fseek(fp, 0, SEEK_SET);
40 if (state) {
41 fprintf(fp, ”1”);
42 } else {
43 fprintf(fp, ”0”);
44 }
45 state = ~state;
46 usleep(250000); // sleep time in microseconds
47 }
48 }

blinkLED.c

Here, as with JavaScript and Python, the gpio pins are referred to by the Linux gpio number. Mapping from
header pin to internal GPIO number shows how the P8 and P9 Headers numbers map to the gpio number. For
this example P9_14 is used, which the table shows in gpio 50.

Compile and run the code:

bone$ gcc -o blinkLED blinkLED.c
bone$./blinkLED
^C

Hit ^C to stop the blinking.

5.19. Using C to Interact with the Physical World 115

BeagleBone Cookbook

Fig. 5.15: Mapping from header pin to internal GPIO number

116 Chapter 5. Beyond the Basics

Chapter 6

Internet of Things

You can easily connect BeagleBone Black to the Internet via a wire (Establishing an Ethernet-Based Internet
Connection), wirelessly (Establishing a WiFi-Based Internet Connection), or through the USB to a host and then
to the Internet (Sharing the Host’s Internet Connection over USB). Either way, it opens up a world of possibilities
for the “Internet of Things” (IoT).

Now that you’re online, this chapter offers various things to do with your connection.

6.1 Accessing Your Host Computer’s Files on the Bone

6.1.1 Problem

You want to access a file on a Linux host computer that’s attached to the Bone.

6.1.2 Solution

If you are running Linux on a host computer attached to BeagleBone Black, it’s not hard to mount the Bone’s
files on the host or the host’s files on the Bone by using sshfs. Suppose that you want to access files on the
host from the Bone. First, install sshfs:

bone$ sudo apt install sshfs

Now, mount the files to an empty directory (substitute your username on the host computer for username and
the IP address of the host for 192.168.7.1):

bone$ mkdir host
bone$ sshfs username@$192.168.7.1:. host
bone$ cd host
bone$ ls

The ls command will now list the files in your home directory on your host computer. You can edit them as if
they were local to the Bone. You can access all the files by substituting :/ for the :. following the IP address.

You can go the other way, too. Suppose that you are on your Linux host computer and want to access files on
your Bone. Install sshfs:

host$ sudo apt install sshfs

and then access:

117

BeagleBone Cookbook

host$ mkdir /mnt/bone
host$ sshfs debian@$192.168.7.2:/ /mnt/bone
host$ cd /mnt/bone
host$ ls

Here, we are accessing the files on the Bone as debian. We’ve mounted the entire file system, starting with /,
so you can access any file. Of course, with great power comes great responsibility, so be careful.

The sshfs command gives you easy access from one computer to another. When you are done, you can
unmount the files by using the following commands:

host$ umount /mnt/bone
bone$ umount home

6.2 Serving Web Pages from the Bone

6.2.1 Problem

You want to use BeagleBone Black as a web server.

6.2.2 Solution

BeagleBone Black already has the nginx web server running.

When you point your browser to 192.168.7.2, you are using the nginx web server. The web pages are served
from /var/www/html/. Add the HTML in A sample web page (test.html) to a file called /var/www/html/test.html,
and then point your browser to 192.168.7.2:/test.html.

Listing 6.1: A sample web page (test.html)

1 <!DOCTYPE html>
2 <html>
3 <body>
4

5 <h1>My First Heading</h1>
6

7 <p>My first paragraph.</p>
8

9 </body>
10 </html>

test.html

You will see the web page shown in test.html as served by nginx.

6.3 Interacting with the Bone via a Web Browser

6.3.1 Problem

BeagleBone Black is interacting with the physical world nicely and you want to display that information on a
web browser.

118 Chapter 6. Internet of Things

BeagleBone Cookbook

Fig. 6.1: test.html as served by nginx

6.3. Interacting with the Bone via a Web Browser 119

BeagleBone Cookbook

6.3.2 Solution

Flask is a Python web framework built with a small core and easy-to-extend philosophy. Serving Web Pages
from the Bone shows how to use nginx, the web server that’s already running. This recipe shows how easy it
is to build your own server. This is an adaptation of Python WebServer With Flask and Raspberry Pi.

First, install flask:

bone$ sudo apt update
bone$ sudo apt install python3-flask

All the code in is the Cookbook repo:

bone$ git clone https://git.beagleboard.org/beagleboard/beaglebone-cookbook-
↪→code
bone$ cd beaglebone-cookbook-code/06iot/flask

6.4 First Flask - hello, world

Our first example is helloWorld.py

Listing 6.2: Python code for flask hello world (helloWorld.py)

1 #!/usr/bin/env python
2 # From: https://towardsdatascience.com/python-webserver-with-flask-and-

↪→raspberry-pi-398423cc6f5d
3

4 from flask import Flask
5 app = Flask(__name__)
6 @app.route('/')
7 def index():
8 return 'hello, world'
9 if __name__ == '__main__':
10 app.run(debug=True, port=8080, host='0.0.0.0')

helloWorld.py

1. The first line loads the Flask module into your Python script.

2. The second line creates a Flask object called app.

3. The third line is where the action is, it says to run the index() function when someone accesses the root
URL (‘/’) of the server. In this case, send the text “hello, world” to the client’s web browser via return.

4. The last line says to “listen” on port 8080, reporting any errors.

Now on your host computer, browse to 192.168.7.2:8080 flask an you should see.

6.5 Adding a template

Let’s improve our “hello, world” application, by using an HTML template and a CSS file for styling our page.
Note: these have been created for you in the “templates” sub-folder. So, we will create a file named in-
dex1.html, that has been saved in /templates.

Here’s what’s in templates/index1.html:

120 Chapter 6. Internet of Things

https://www.fullstackpython.com/flask.html
https://towardsdatascience.com/python-webserver-with-flask-and-raspberry-pi-398423cc6f5d

BeagleBone Cookbook

Fig. 6.2: Test page served by our custom flask server

6.5. Adding a template 121

BeagleBone Cookbook

Listing 6.3: index1.html

1 <!DOCTYPE html>
2 <head>
3 <title>{{ title }}</title>
4 </head>
5 <body>
6 <h1>Hello, World!</h1>
7 <h2>The date and time on the server is: {{ time }}</h2>
8 </body>
9 </html>

index1.html

Note: a style sheet (style.css) is also included. This will be populated later.

Observe that anything in double curly braces within the HTML template is interpreted as a variable that would
be passed to it from the Python script via the render_template function. Now, let’s create a new Python script.
We will name it app1.py:

Listing 6.4: app1.py

1 #!/usr/bin/env python
2 # From: https://towardsdatascience.com/python-webserver-with-flask-and-

↪→raspberry-pi-398423cc6f5d
3

4 '''
5 Code created by Matt Richardson
6 for details, visit: http://mattrichardson.com/Raspberry-Pi-Flask/inde...
7 '''
8 from flask import Flask, render_template
9 import datetime
10 app = Flask(__name__)
11 @app.route(”/”)
12 def hello():
13 now = datetime.datetime.now()
14 timeString = now.strftime(”%Y-%m-%d %H:%M”)
15 templateData = {
16 'title' : 'HELLO!',
17 'time': timeString
18 }
19 return render_template('index1.html', **templateData)
20 if __name__ == ”__main__”:
21 app.run(host='0.0.0.0', port=8080, debug=True)
22

app1.py

Note that we create a formatted string (“timeString”) using the date and time from the “now” object, that has
the current time stored on it.

Next important thing on the above code, is that we created a dictionary of variables (a set of keys, such as the
title that is associated with values, such as HELLO!) to pass into the template. On “return”, we will return the
index1.html template to the web browser using the variables in the templateData dictionary.

Execute the Python script:

bone$.\app.py

Open any web browser and browse to 192.168.7.2:8080. You should see:

Note that the page’s content changes dynamically any time that you refresh it with the actual variable data
passed by Python script. In our case, “title” is a fixed value, but “time” changes every minute.

122 Chapter 6. Internet of Things

BeagleBone Cookbook

Fig. 6.3: Test page served by app1.py

6.5. Adding a template 123

BeagleBone Cookbook

6.6 Displaying GPIO Status in a Web Browser - reading a button

6.6.1 Problem

You want a web page to display the status of a GPIO pin.

6.6.2 Solution

This solution builds on the Flask-based web server solution in Interacting with the Bone via a Web Browser.

To make this recipe, you will need:

• Breadboard and jumper wires.

• Pushbutton switch.

Wire your pushbutton as shown in Diagram for wiring a pushbutton and magnetic reed switch input. Wire a
button to P9_11 and have the web page display the value of the button.

Let’s use a new Python script named app2.py.

Listing 6.5: A simple Flask-based web server to read a GPIO (app2.py)

1 #!/usr/bin/env python
2 # From: https://towardsdatascience.com/python-webserver-with-flask-and-

↪→raspberry-pi-398423cc6f5d
3 import os
4 from flask import Flask, render_template
5 app = Flask(__name__)
6

7 pin = '30' # P9_11 is gpio 30
8 GPIOPATH=”/sys/class/gpio”
9 buttonSts = 0
10

11 # Make sure pin is exported
12 if (not os.path.exists(GPIOPATH+”/gpio”+pin)):
13 f = open(GPIOPATH+”/export”, ”w”)
14 f.write(pin)
15 f.close()
16

17 # Make it an input pin
18 f = open(GPIOPATH+”/gpio”+pin+”/direction”, ”w”)
19 f.write(”in”)
20 f.close()
21

22 @app.route(”/”)
23 def index():
24 # Read Button Status
25 f = open(GPIOPATH+”/gpio”+pin+”/value”, ”r”)
26 buttonSts = f.read()[:-1]
27 f.close()
28

29 # buttonSts = GPIO.input(button)
30 templateData = {
31 'title' : 'GPIO input Status!',
32 'button' : buttonSts,
33 }
34 return render_template('index2.html', **templateData)
35 if __name__ == ”__main__”:
36 app.run(host='0.0.0.0', port=8080, debug=True)

app2.py

124 Chapter 6. Internet of Things

BeagleBone Cookbook

What we are doing is defining the button on P9_11 as input, reading its value and storing it in buttonSts. Inside
the function index(), we will pass that value to our web page through “button” that is part of our variable
dictionary: templateData.

Let’s also see the new index2.html to show the GPIO status:

Listing 6.6: A simple Flask-based web server to read a GPIO (in-
dex2.html)

1 <!DOCTYPE html>
2 <head>
3 <title>{{ title }}</title>
4 <link rel=”stylesheet” href='../static/style.css'/>
5 </head>
6 <body>
7 <h1>{{ title }}</h1>
8 <h2>Button pressed: {{ button }}</h1>
9 </body>
10 </html>

index2.html

Now, run the following command:

bone$./app2.py

Point your browser to http://192.168.7.2:8080, and the page will look like Status of a GPIO pin on a web page.

Currently, the 0 shows that the button isn’t pressed. Try refreshing the page while pushing the button, and you
will see 1 displayed.

It’s not hard to assemble your own HTML with the GPIO data. It’s an easy extension to write a program to
display the status of all the GPIO pins.

6.7 Controlling GPIOs

6.7.1 Problem

You want to control an LED attached to a GPIO pin.

6.7.2 Solution

Now that we know how to “read” GPIO Status, let’s change them. What we will do will control the LED via the
web page. We have an LED connected to P9_14. Controlling remotely we will change its status from LOW to
HIGH and vice-versa.

Create a new Python script and name it app3.py.

Listing 6.7: A simple Flask-based web server to read a GPIO (app3.py)

1 #!/usr/bin/env python
2 # From: https://towardsdatascience.com/python-webserver-with-flask-and-

↪→raspberry-pi-398423cc6f5d
3 # import Adafruit_BBIO.GPIO as GPIO
4 import os
5 from flask import Flask, render_template, request
6 app = Flask(__name__)
7 #define LED GPIO
8 ledRed = ”P9_14”
9 pin = '50' # P9_14 is gpio 50

(continues on next page)

6.7. Controlling GPIOs 125

BeagleBone Cookbook

Fig. 6.4: Status of a GPIO pin on a web page

126 Chapter 6. Internet of Things

BeagleBone Cookbook

(continued from previous page)

10 GPIOPATH=”/sys/class/gpio”
11

12 #initialize GPIO status variable
13 ledRedSts = 0
14 # Make sure pin is exported
15 if (not os.path.exists(GPIOPATH+”/gpio”+pin)):
16 f = open(GPIOPATH+”/export”, ”w”)
17 f.write(pin)
18 f.close()
19 # Define led pin as output
20 f = open(GPIOPATH+”/gpio”+pin+”/direction”, ”w”)
21 f.write(”out”)
22 f.close()
23 # turn led OFF
24 f = open(GPIOPATH+”/gpio”+pin+”/value”, ”w”)
25 f.write(”0”)
26 f.close()
27

28 @app.route(”/”)
29 def index():
30 # Read Sensors Status
31 f = open(GPIOPATH+”/gpio”+pin+”/value”, ”r”)
32 ledRedSts = f.read()
33 f.close()
34 templateData = {
35 'title' : 'GPIO output Status!',
36 'ledRed' : ledRedSts,
37 }
38 return render_template('index3.html', **templateData)
39

40 @app.route(”/<deviceName>/<action>”)
41 def action(deviceName, action):
42 if deviceName == 'ledRed':
43 actuator = ledRed
44 f = open(GPIOPATH+”/gpio”+pin+”/value”, ”w”)
45 if action == ”on”:
46 f.write(”1”)
47 if action == ”off”:
48 f.write(”0”)
49 f.close()
50

51 f = open(GPIOPATH+”/gpio”+pin+”/value”, ”r”)
52 ledRedSts = f.read()
53 f.close()
54

55 templateData = {
56 'ledRed' : ledRedSts,
57 }
58 return render_template('index3.html', **templateData)
59 if __name__ == ”__main__”:
60 app.run(host='0.0.0.0', port=8080, debug=True)

app3.py

What we have new on above code is the new “route”:

@app.route(“/<deviceName>/<action>”)

From the webpage, calls will be generated with the format:

http://192.168.7.2:8081/ledRed/on

or

6.7. Controlling GPIOs 127

http://192.168.7.2:8081/ledRed/on

BeagleBone Cookbook

http://192.168.7.2:8081/ledRed/off

For the above example, ledRed is the “deviceName” and on or off are examples of possible “action”. Those
routes will be identified and properly “worked”. The main steps are:

• Convert the string “ledRED”, for example, on its equivalent GPIO pin. The integer variable ledRed is
equivalent to P9_14. We store this value on variable “actuator”

• For each actuator, we will analyze the “action”, or “command” and act properly. If “action = on” for
example, we must use the command: f.write(”1”)

• Update the status of each actuator

• Return the data to index.html

Let’s now create an index.html to show the GPIO status of each actuator andmore importantly, create “buttons”
to send the commands:

Listing 6.8: A simple Flask-based web server to write a GPIO (in-
dex3.html)

1 <!DOCTYPE html>
2 <head>
3 <title>GPIO Control</title>
4 <link rel=”stylesheet” href='../static/style.css'/>
5 </head>
6 <body>
7 <h2>Actuators</h2>
8 <h3> Status </h3>
9 RED LED ==> {{ ledRed }}
10

11 <h3> Commands </h3>
12 RED LED Ctrl ==>
13 TURN ON
14 TURN OFF
15 </body>
16 </html>

index3.html

bone$./app3.py

Point your browser as before and you will see:

Status of a GPIO pin on a web page

Try clicking the “TURN ON” and “TURN OFF” buttons and your LED will respond.

app4.py and app5.py combine the previous apps. Try them out.

app4.py app5.py

6.8 Plotting Data

6.8.1 Problem

You have live, continuous, data coming into your Bone via one of the Analog Ins, and you want to plot it.

6.8.2 Solution

128 Chapter 6. Internet of Things

http://192.168.7.2:8081/ledRed/off

BeagleBone Cookbook

6.8. Plotting Data 129

BeagleBone Cookbook

Analog in - Continuous

(This is based on information at: http://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/
Foundational_Components/Kernel/Kernel_Drivers/ADC.html#Continuous%20Mode)

Reading a continuous analog signal requires some set up. First go to the iio devices directory.

bone$ cd /sys/bus/iio/devices/iio:device0
bone$ ls -F
buffer/ in_voltage0_raw in_voltage2_raw in_voltage4_raw in_voltage6_raw ␣
↪→name power/ subsystem@
dev in_voltage1_raw in_voltage3_raw in_voltage5_raw in_voltage7_raw ␣
↪→of_node@ scan_elements/ uevent

Here you see the files used to read the one shot values. Look in scan_elements to see how to enable continuous
input.

bone$ ls scan_elements
in_voltage0_en in_voltage1_index in_voltage2_type in_voltage4_en ␣
↪→in_voltage5_index in_voltage6_type
in_voltage0_index in_voltage1_type in_voltage3_en in_voltage4_index ␣
↪→in_voltage5_type in_voltage7_en
in_voltage0_type in_voltage2_en in_voltage3_index in_voltage4_type ␣
↪→in_voltage6_en in_voltage7_index
in_voltage1_en in_voltage2_index in_voltage3_type in_voltage5_en ␣
↪→in_voltage6_index in_voltage7_type

Here you see three values for each analog input, _en (enable),
_index (index of this channel in the buffer’s chunks) and _type (how the ADC stores its data). (See the
link above for details.) Let’s use the input at P9.40 which is AIN1. To enable this input:

bone$ echo 1 > scan_elements/in_voltage1_en

Next set the buffer size.

bone$ ls buffer
data_available enable length watermark

Let’s use a 512 sample buffer. You might need to experiment with this.

bone$ echo 512 > buffer/length

Then start it running.

bone$ echo 1 > buffer/enable

Now, just read from */dev/iio:device0*.

An example Python program that does the above and reads and plots the buffer is analogInContinuous.py.

Listing 6.9: Code to read and plot a continuous analog in-
put(analogInContinuous.py)

1 #!/usr/bin/python
2 #//////////////////////////////////////
3 # analogInContinuous.py
4 # Read analog data via IIO continuous mode and plots it.
5 #//////////////////////////////////////
6 # From: https://stackoverflow.com/questions/20295646/python-ascii-plots-in-

↪→terminal
7 # https://github.com/dkogan/gnuplotlib
8 # https://github.com/dkogan/gnuplotlib/blob/master/guide/guide.org

(continues on next page)

130 Chapter 6. Internet of Things

http://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/Kernel/Kernel_Drivers/ADC.html#Continuous%20Mode
http://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/Kernel/Kernel_Drivers/ADC.html#Continuous%20Mode

BeagleBone Cookbook

Fig. 6.5: 1KHz sine wave sampled at 8KHz

6.8. Plotting Data 131

BeagleBone Cookbook

(continued from previous page)

9 # sudo apt install gnuplot (10 minute to install)
10 # sudo apt install libatlas-base-dev
11 # pip3 install gnuplotlib
12 # This uses X11, so when connecting to the bone from the host use: ssh -X␣

↪→bone
13

14 # See https://elinux.org/index.php?title=EBC_Exercise_10a_Analog_In#Analog_
↪→in_-_Continuous.2C_Change_the_sample_rate

15 # for instructions on changing the sampling rate. Can go up to 200KHz.
16

17 fd = open(IIODEV, ”r”)
18 import numpy as np
19 import gnuplotlib as gp
20 import time
21 # import struct
22

23 IIOPATH='/sys/bus/iio/devices/iio:device0'
24 IIODEV='/dev/iio:device0'
25 LEN = 100
26 SAMPLERATE=8000
27 AIN='2'
28

29 # Setup IIO for Continous reading
30 # Enable AIN
31 try:
32 file1 = open(IIOPATH+'/scan_elements/in_voltage'+AIN+'_en', 'w')
33 file1.write('1')
34 file1.close()
35 except: # carry on if it's already enabled
36 pass
37 # Set buffer length
38 file1 = open(IIOPATH+'/buffer/length', 'w')
39 file1.write(str(2*LEN)) # I think LEN is in 16-bit values, but here we␣

↪→pass bytes
40 file1.close()
41 # Enable continuous
42 file1 = open(IIOPATH+'/buffer/enable', 'w')
43 file1.write('1')
44 file1.close()
45

46 x = np.linspace(0, 1000*LEN/SAMPLERATE, LEN)
47 # Do a dummy plot to give time of the fonts to load.
48 gp.plot(x, x)
49 print(”Waiting for fonts to load”)
50 time.sleep(10)
51

52 print('Hit ^C to stop')
53

54 fd = open(IIODEV, ”r”)
55

56 try:
57 while True:
58 y = np.fromfile(fd, dtype='uint16', count=LEN)*1.8/4096
59 # print(y)
60 gp.plot(x, y,
61 xlabel = 't (ms)',
62 ylabel = 'volts',
63 _yrange = [0, 2],
64 title = 'analogInContinuous',
65 legend = np.array((”P9.39”,),),
66 # ascii=1,

(continues on next page)

132 Chapter 6. Internet of Things

BeagleBone Cookbook

(continued from previous page)

67 # terminal=”xterm”,
68 # legend = np.array((”P9.40”, ”P9.38”),),
69 # _with = 'lines'
70)
71

72 except KeyboardInterrupt:
73 print(”Turning off input.”)
74 # Disable continuous
75 file1 = open(IIOPATH+'/buffer/enable', 'w')
76 file1.write('0')
77 file1.close()
78

79 file1 = open(IIOPATH+'/scan_elements/in_voltage'+AIN+'_en', 'w')
80 file1.write('0')
81 file1.close()
82

83 # // Bone | Pocket | AIN
84 # // ----- | ------ | ---
85 # // P9_39 | P1_19 | 0
86 # // P9_40 | P1_21 | 1
87 # // P9_37 | P1_23 | 2
88 # // P9_38 | P1_25 | 3
89 # // P9_33 | P1_27 | 4
90 # // P9_36 | P2_35 | 5
91 # // P9_35 | P1_02 | 6

analogInContinuous.py

Be sure to read the instillation instructions in the comments. Also note this uses X windows and you need to
ssh -X 192.168.7.2 for X to know where the display is.

Run it:

host$ ssh -X bone

bone$ cd beaglebone-cookbook-code/06iot
bone$./analogInContinuous.py
Hit ^C to stop

Todo: verify this works. fonts are taking too long to load

1KHz sine wave sampled at 8KHz is the output of a 1KHz sine wave.

It’s a good idea to disable the buffer when done.

bone$ echo 0 > /sys/bus/iio/devices/iio:device0/buffer/enable

Analog in - Continuous, Change the sample rate

The built in ADCs sample at 8k samples/second by default. They can run as fast as 200k samples/second by
editing a device tree.

bone$ cd /opt/source/bb.org-overlays
bone$ make

This will take a while the first time as it compiles all the device trees.

bone$ vi src/arm/src/arm/BB-ADC-00A0.dts

Around line 57 you’ll see

6.8. Plotting Data 133

BeagleBone Cookbook

Line Code
57 // For each step, number of adc clock cycles to wait between setting␣
↪→up muxes and sampling.
58 // range: 0 .. 262143
59 // optional, default is 152 (XXX but why?!)
60 ti,chan-step-opendelay = <152 152 152 152 152 152 152 152>;
61 //`
62 // XXX is there any purpose to set this nonzero other than to fine-
↪→tune the sample rate?
63
64
65 // For each step, how many times it should sample to average.
66 // range: 1 .. 16, must be power of two (i.e. 1, 2, 4, 8, or 16)
67 // optional, default is 16
68 ti,chan-step-avg = <16 16 16 16 16 16 16 16>;

The comments give lots of details on how to adjust the device tree to change the sample rate. Line 68 says
for every sample returned, average 16 values. This will give you a cleaner signal, but if you want to go fast,
change the 16’s to 1’s. Line 60 says to delay 152 cycles between each sample. Set this to 0 to got as fast a
possible.

ti,chan-step-avg = <1 1 1 1 1 1 1 1>;
ti,chan-step-opendelay = <0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00>;

Now compile it.

bone$ make
DTC src/arm/BB-ADC-00A0.dtbo

gcc -o config-pin ./tools/pmunts_muntsos/config-pin.c

It knows to only recompile the file you just edited. Now install and reboot.

bone$ sudo make install
...
'src/arm/AM335X-PRU-UIO-00A0.dtbo' -> '/lib/firmware/AM335X-PRU-UIO-00A0.dtbo
↪→'
'src/arm/BB-ADC-00A0.dtbo' -> '/lib/firmware/BB-ADC-00A0.dtbo'
'src/arm/BB-BBBMINI-00A0.dtbo' -> '/lib/firmware/BB-BBBMINI-00A0.dtbo'
...
bone$ reboot

A number of files get installed, including the ADC file. Now try rerunning.

bone$ cd beaglebone-cookbook-code/06iot
bone$./analogInContinuous.py
Hit ^C to stop

Here’s the output of a 10KHz triangle wave.

Todo: Is this true: (The plot is wrong, but eLinux won’t let me fix it.)

It’s still a good idea to disable the buffer when done.

bone$ echo 0 > /sys/bus/iio/devices/iio:device0/buffer/enable

6.9 Sending an Email

134 Chapter 6. Internet of Things

BeagleBone Cookbook

Fig. 6.6: 10KHz triangle wave sampled at 200KHz

6.9. Sending an Email 135

BeagleBone Cookbook

6.9.1 Problem

You want to send an email via Gmail from the Bone.

6.9.2 Solution

This example came from https://realpython.com/python-send-email/. First, you need to set up a Gmail account,
if you don’t already have one. Then add the code in Sending email using nodemailer (emailtTest.py) to a file
named emailTest.py. Substitute your own Gmail username. For the password:

• Go to: https://myaccount.google.com/security

• Go to 2-Step Verification and at the bottom, select App password.

• Generate your own 16 char password and copy it into emailTest.py.

• Be sure to delete password when done https://myaccount.google.com/apppasswords .

Listing 6.10: Sending email using nodemailer (emailtTest.py)

1 #!/usr/bin/env python
2 # From: https://realpython.com/python-send-email/
3 import smtplib, ssl
4

5 port = 587 # For starttls
6 smtp_server = ”smtp.gmail.com”
7 sender_email = ”from_account@gmail.com”
8 receiver_email = ”to_account@gmail.com”
9 # Go to: https://myaccount.google.com/security
10 # Select App password
11 # Generate your own 16 char password, copy here
12 # Delete password when done
13 password = ”cftqhcejjdjfdwjh”
14 message = ”””\
15 Subject: Testing email
16

17 This message is sent from Python.
18

19 ”””
20 context = ssl.create_default_context()
21 with smtplib.SMTP(smtp_server, port) as server:
22 server.starttls(context=context)
23 server.login(sender_email, password)
24 server.sendmail(sender_email, receiver_email, message)

emailTest.py

Then run the script to send the email:

bone$ chmod *x emailTest.py
bone$.\emailTest.py

Warning: This solution requires your Gmail password to be in plain text in a file, which is a security
problem. Make sure you know who has access to your Bone. Also, if you remove the microSD card, make
sure you know who has access to it. Anyone with your microSD card can read your Gmail password.

Be careful about putting this into a loop. Gmail presently limits you to 500 emails per day and 10 MB per
message.

See https://realpython.com/python-send-email/ for an example that sends an attached file.

136 Chapter 6. Internet of Things

https://realpython.com/python-send-email/
https://mail.google.com
https://myaccount.google.com/security
https://myaccount.google.com/apppasswords
http://group-mail.com/email-marketing/how-to-send-bulk-emails-using-gmail
http://group-mail.com/email-marketing/how-to-send-bulk-emails-using-gmail
https://realpython.com/python-send-email/

BeagleBone Cookbook

6.10 Sending an SMS Message

Todo: My twilio account is suspended, using yoder@rose-hulman.edu.

6.10.1 Problem

You want to send a text message from BeagleBone Black.

6.10.2 Solution

There are a number of SMS services out there. This recipe uses Twilio because you can use it for free, but
you will need to verify the number to which you are texting. First, go to Twilio’s home page and set up an
account. Note your account SID and authorization token. If you are using the free version, be sure to verify
your numbers.

Next, install Trilio by using the following command for python:

bone$ sudo apt install python-pip
bone$ sudo pip install twilio

or for Javascript:

bone$ npm install -g twilio

Finally, add the code in Sending SMS messages using Twilio (twilioTest.py) to a file named twilioTest.py
and run it. Your text will be sent.

Python

Listing 6.11: Sending SMS messages using Twilio (twilioTest.
py)

1 #!/usr/bin/env python
2 # Download the helper library from https://www.twilio.com/docs/python/install
3 import os
4 from twilio.rest import Client
5

6

7 # Find your Account SID and Auth Token at twilio.com/console
8 # and set the environment variables. See http://twil.io/secure
9 account_sid = os.environ['TWILIO_ACCOUNT_SID']
10 auth_token = os.environ['TWILIO_AUTH_TOKEN']
11 client = Client(account_sid, auth_token)
12

13 message = client.messages \
14 .create(
15 body=”Join Earth's mightiest heroes. Like Kevin Bacon.”,
16 from_='+18122333219',
17 to='+18122333219'
18)
19

20 print(message.sid)

twilioTest.py

6.10. Sending an SMS Message 137

mailto:yoder@rose-hulman.edu
http://bit.ly/1MrHBBF
https://www.twilio.com/
http://bit.ly/19c7GZ7
http://bit.ly/19c7GZ7

BeagleBone Cookbook

JavaScript

Listing 6.12: Sending SMS messages using Twilio (twilio-test.
js)

1 #!/usr/bin/env node
2 // From: http://twilio.github.io/twilio-node/
3 // Twilio Credentials
4 var accountSid = '';
5 var authToken = '';
6

7 //require the Twilio module and create a REST client
8 var client = require('twilio')(accountSid, authToken);
9

10 client.messages.create({
11 to: ”812555121”,
12 from: ”+2605551212”,
13 body: ”This is a test”,
14 }, function(err, message) {
15 console.log(message.sid);
16 });
17

18 // https://github.com/twilio/twilio-node/blob/master/LICENSE

twilio-test.js

Twilio allows a small number of free text messages, enough to test your code and to play around some.

6.11 Displaying the Current Weather Conditions

6.11.1 Problem

You want to display the current weather conditions.

6.11.2 Solution

Because your Bone is on the network, it’s not hard to access the current weather conditions from a weather
API.

• Go to https://openweathermap.org/ and create an account.

• Go to https://home.openweathermap.org/api_keys and get your API key.

• Store your key in the bash variable APPID.

bash$ export APPID=”Your key”

• Then add the code in Code for getting current weather conditions (weather.py) to a file named
weather.py.

• Run the python script.

Listing 6.13: Code for getting current weather conditions (weather.
py)

1 #!/usr/bin/env python3
2 # Displays current weather and forecast
3 import os
4 import sys
5 from datetime import datetime

(continues on next page)

138 Chapter 6. Internet of Things

https://openweathermap.org/
https://home.openweathermap.org/api_keys

BeagleBone Cookbook

(continued from previous page)

6 import requests # For getting weather
7

8 # http://api.openweathermap.org/data/2.5/onecall
9 params = {
10 'appid': os.environ['APPID'],
11 # 'city': 'brazil,indiana',
12 'exclude': ”minutely,hourly”,
13 'lat': '39.52',
14 'lon': '-87.12',
15 'units': 'imperial'
16 }
17 urlWeather = ”http://api.openweathermap.org/data/2.5/onecall”
18

19 print(”Getting weather”)
20

21 try:
22 r = requests.get(urlWeather, params=params)
23 if(r.status_code==200):
24 # print(”headers: ”, r.headers)
25 # print(”text: ”, r.text)
26 # print(”json: ”, r.json())
27 weather = r.json()
28 print(”Temp: ”, weather['current']['temp']) # �
29 print(”Humid:”, weather['current']['humidity'])
30 print(”Low: ”, weather['daily'][1]['temp']['min'])
31 print(”High: ”, weather['daily'][0]['temp']['max'])
32 day = weather['daily'][0]['sunrise']-weather['timezone_offset']
33 print(”sunrise: ” + datetime.utcfromtimestamp(day).strftime('%Y-%m-

↪→%d %H:%M:%S'))
34 # print(”Day: ” + datetime.utcfromtimestamp(day).strftime('%a'))
35 # print(”weather: ”, weather['daily'][1]) # �
36 # print(”weather: ”, weather) # �
37 # print(”icon: ”, weather['current']['weather'][0]['icon'])
38 # print()
39

40 else:
41 print(”status_code: ”, r.status_code)
42 except IOError:
43 print(”File not found: ” + tmp101)
44 print(”Have you run setup.sh?”)
45 except:
46 print(”Unexpected error:”, sys.exc_info())

weather.py

1. Prints current conditions.

2. Prints the forecast for the next day.

3. Prints everything returned by the weather site.

Uncomment what you want to be displayed.

Run this by using the following commands:

bone$./weather.py
Getting weather
Temp: 73.72
Humid: 31
Low: 54.21
High: 75.47
sunrise: 2023-06-09 14:21:07

The weather API returns lots of information. Use Python to extract the information you want.

6.11. Displaying the Current Weather Conditions 139

BeagleBone Cookbook

6.12 Sending and Receiving Tweets

6.12.1 Problem

You want to send and receive tweets (Twitter posts) with your Bone.

6.12.2 Solution

Twitter has a whole git repo of sample code for interacting with Twitter. Here I’ll show how to create a tweet
and then how to delete it.

6.13 Creating a Project and App

• Follow the directions here to create a project and app.

• Be sure to give your app Read and Write permission.

• Then go to the developer portal and select you app by clicking on the gear icon to the right of the app
name.

• Click on the Keys and tokens tab. Here you can get to all your keys and tokens.

Tip: Be sure to record them, you can’t get them later.

• Open the file twitterKeys.sh and record your keys in it.

export API_KEY='XXX'
export API_SECRET_KEY='XXX'
export BEARER_TOKEN='XXX'
export TOKEN='XXXX'
export TOKEN_SECRET='XXX'

• Next, source the file so the values will appear in your bash session.

bash$ source twitterKeys.sh

You’ll need to do this every time you open a new bash window.

6.14 Creating a tweet

Add the code in Create a Tweet (twitter_create_tweet.py) to a file called twitter_create_tweet_.py
and run it to see your timeline.

Listing 6.14: Create a Tweet (twitter_create_tweet.py)

1 #!/usr/bin/env python
2 # From: https://github.com/twitterdev/Twitter-API-v2-sample-code/blob/main/

↪→Manage-Tweets/create_tweet.py
3 from requests_oauthlib import OAuth1Session
4 import os
5 import json
6

7 # In your terminal please set your environment variables by running the␣
↪→following lines of code.

8 # export 'API_KEY'='<your_consumer_key>'
(continues on next page)

140 Chapter 6. Internet of Things

https://twitter.com
https://github.com/twitterdev/Twitter-API-v2-sample-code
https://developer.twitter.com/en/docs/apps/overview
https://developer.twitter.com/en/portal/projects-and-apps

BeagleBone Cookbook

(continued from previous page)

9 # export 'API_SECRET_KEY'='<your_consumer_secret>'
10

11 consumer_key = os.environ.get(”API_KEY”)
12 consumer_secret = os.environ.get(”API_SECRET_KEY”)
13

14 # Be sure to add replace the text of the with the text you wish to Tweet.␣
↪→You can also add parameters to post polls, quote Tweets, Tweet with reply␣
↪→settings, and Tweet to Super Followers in addition to other features.

15 payload = {”text”: ”Hello world!”}
16

17 # Get request token
18 request_token_url = ”https://api.twitter.com/oauth/request_token?oauth_

↪→callback=oob&x_auth_access_type=write”
19 oauth = OAuth1Session(consumer_key, client_secret=consumer_secret)
20

21 try:
22 fetch_response = oauth.fetch_request_token(request_token_url)
23 except ValueError:
24 print(
25 ”There may have been an issue with the consumer_key or consumer_

↪→secret you entered.”
26)
27

28 resource_owner_key = fetch_response.get(”oauth_token”)
29 resource_owner_secret = fetch_response.get(”oauth_token_secret”)
30 print(”Got OAuth token: %s” % resource_owner_key)
31

32 # Get authorization
33 base_authorization_url = ”https://api.twitter.com/oauth/authorize”
34 authorization_url = oauth.authorization_url(base_authorization_url)
35 print(”Please go here and authorize: %s” % authorization_url)
36 verifier = input(”Paste the PIN here: ”)
37

38 # Get the access token
39 access_token_url = ”https://api.twitter.com/oauth/access_token”
40 oauth = OAuth1Session(
41 consumer_key,
42 client_secret=consumer_secret,
43 resource_owner_key=resource_owner_key,
44 resource_owner_secret=resource_owner_secret,
45 verifier=verifier,
46)
47 oauth_tokens = oauth.fetch_access_token(access_token_url)
48

49 access_token = oauth_tokens[”oauth_token”]
50 access_token_secret = oauth_tokens[”oauth_token_secret”]
51

52 # Make the request
53 oauth = OAuth1Session(
54 consumer_key,
55 client_secret=consumer_secret,
56 resource_owner_key=access_token,
57 resource_owner_secret=access_token_secret,
58)
59

60 # Making the request
61 response = oauth.post(
62 ”https://api.twitter.com/2/tweets”,
63 json=payload,
64)
65

(continues on next page)

6.14. Creating a tweet 141

BeagleBone Cookbook

(continued from previous page)

66 if response.status_code != 201:
67 raise Exception(
68 ”Request returned an error: {} {}”.format(response.status_code,␣

↪→response.text)
69)
70

71 print(”Response code: {}”.format(response.status_code))
72

73 # Saving the response as JSON
74 json_response = response.json()
75 print(json.dumps(json_response, indent=4, sort_keys=True))

twitter_create_tweet.py

Run the code and you’ll have to authorize.

bash$./twitter_create_tweet.py
Got OAuth token: tWBldQAAAAAAWBJgAAABggJt7qg
Please go here and authorize: https://api.twitter.com/oauth/authorize?oauth_
↪→token=tWBldQAAAAAAWBJgAAABggJt7qg
Paste the PIN here: 4859044
Response code: 201
{

”data”: {
”id”: ”1547963178700533760”,
”text”: ”Hello world!”

}
}

Check your twitter account and you’ll see the new tweet. Record the id number and we’ll use it next to delete
the tweet.

6.15 Deleting a tweet

Use the code in Code to delete a tweet (twitter_delete_tweet.py) to delete a tweet. Around line 15 is the id
number. Paste in the value returned above.

Listing 6.15: Code to delete a tweet (twitter_delete_tweet.
py)

1 #!/usr/bin/env python
2 # From: https://github.com/twitterdev/Twitter-API-v2-sample-code/blob/main/

↪→Manage-Tweets/delete_tweet.py
3 from requests_oauthlib import OAuth1Session
4 import os
5 import json
6

7 # In your terminal please set your environment variables by running the␣
↪→following lines of code.

8 # export 'API_KEY'='<your_consumer_key>'
9 # export 'API_SECRET_KEY'='<your_consumer_secret>'
10

11 consumer_key = os.environ.get(”API_KEY”)
12 consumer_secret = os.environ.get(”API_SECRET_KEY”)
13

14 # Be sure to replace tweet-id-to-delete with the id of the Tweet you wish to␣
↪→delete. The authenticated user must own the list in order to delete

15 id = ”1547963178700533760”
16

(continues on next page)

142 Chapter 6. Internet of Things

BeagleBone Cookbook

(continued from previous page)

17 # Get request token
18 request_token_url = ”https://api.twitter.com/oauth/request_token?oauth_

↪→callback=oob&x_auth_access_type=write”
19 oauth = OAuth1Session(consumer_key, client_secret=consumer_secret)
20

21 try:
22 fetch_response = oauth.fetch_request_token(request_token_url)
23 except ValueError:
24 print(
25 ”There may have been an issue with the consumer_key or consumer_

↪→secret you entered.”
26)
27

28 resource_owner_key = fetch_response.get(”oauth_token”)
29 resource_owner_secret = fetch_response.get(”oauth_token_secret”)
30 print(”Got OAuth token: %s” % resource_owner_key)
31

32 # Get authorization
33 base_authorization_url = ”https://api.twitter.com/oauth/authorize”
34 authorization_url = oauth.authorization_url(base_authorization_url)
35 print(”Please go here and authorize: %s” % authorization_url)
36 verifier = input(”Paste the PIN here: ”)
37

38 # Get the access token
39 access_token_url = ”https://api.twitter.com/oauth/access_token”
40 oauth = OAuth1Session(
41 consumer_key,
42 client_secret=consumer_secret,
43 resource_owner_key=resource_owner_key,
44 resource_owner_secret=resource_owner_secret,
45 verifier=verifier,
46)
47 oauth_tokens = oauth.fetch_access_token(access_token_url)
48

49 access_token = oauth_tokens[”oauth_token”]
50 access_token_secret = oauth_tokens[”oauth_token_secret”]
51

52 # Make the request
53 oauth = OAuth1Session(
54 consumer_key,
55 client_secret=consumer_secret,
56 resource_owner_key=access_token,
57 resource_owner_secret=access_token_secret,
58)
59

60 # Making the request
61 response = oauth.delete(”https://api.twitter.com/2/tweets/{}”.format(id))
62

63 if response.status_code != 200:
64 raise Exception(
65 ”Request returned an error: {} {}”.format(response.status_code,␣

↪→response.text)
66)
67

68 print(”Response code: {}”.format(response.status_code))
69

70 # Saving the response as JSON
71 json_response = response.json()
72 print(json_response)

twitter_delete_tweet.py

6.15. Deleting a tweet 143

BeagleBone Cookbook

Todo: Start Here. Update for python.

The code in Tweet when a button is pushed (twitterPushbutton.js) sends a tweet whenever a button is pushed.

Listing 6.16: Tweet when a button is pushed (twitterPushbutton.js)

1 #!/usr/bin/env node
2 // From: https://www.npmjs.org/package/node-twitter
3 // Tweets with attached image media (JPG, PNG or GIF) can be posted
4 // using the upload API endpoint.
5 var Twitter = require('node-twitter');
6 var b = require('bonescript');
7 var key = require('./twitterKeys');
8 var gpio = ”P9_42”;
9 var count = 0;
10

11 b.pinMode(gpio, b.INPUT);
12 b.attachInterrupt(gpio, sendTweet, b.FALLING);
13

14 var twitterRestClient = new Twitter.RestClient(
15 key.API_KEY, key.API_SECRET,
16 key.TOKEN, key.TOKEN_SECRET
17);
18

19 function sendTweet() {
20 console.log(”Sending...”);
21 count++;
22

23 twitterRestClient.statusesUpdate(
24 {'status': 'Posting tweet ' + count + ' via my BeagleBone Black', },
25 function(error, result) {
26 if (error) {
27 console.log('Error: ' +
28 (error.code ? error.code + ' ' + error.message : error.

↪→message));
29 }
30

31 if (result) {
32 console.log(result);
33 }
34 }
35);
36 }
37

38 // node-twitter is made available under terms of the BSD 3-Clause License.
39 // http://www.opensource.org/licenses/BSD-3-Clause

twitterPushbutton.js

To see many other examples, go to Twitter for Node.js on NPMJS.com.

This opens up many new possibilities. You can read a temperature sensor and tweet its value whenever it
changes, or you can turn on an LED whenever a certain hashtag is used. What are you going to tweet?

6.16 Wiring the IoT with Node-RED

6.16.1 Problem

You want BeagleBone to interact with the Internet, but you want to program it graphically.

144 Chapter 6. Internet of Things

https://www.npmjs.com/package/twitter

BeagleBone Cookbook

6.16.2 Solution

Node-RED is a visual tool for wiring the IoT. It makes it easy to turn on a light when a certain hashtag is tweeted,
or spin a motor if the forecast is for hot weather.

6.17 Starting Node-RED

Node-RED is already installed, to run Node-RED, use the following command to start.

bone$ sudo systemctl start nodered

Or run the following to have Node-RED start everytime you reboot.

bone$ sudo systemctl enable --now nodered

Node-RED is listening on part 1880. Point your browser to http://192.168.7.2:1880, and you will see the screen
shown in The Node-RED web page.

Fig. 6.7: The Node-RED web page

6.18 Building a Node-RED Flow

The example in this recipe builds a Node-RED flow that will toggle an LED whenever a certain hashtag is
tweeted. But first, you need to set up the Node-RED flow with the twitter node:

• On the Node-RED web page, scroll down until you see the social nodes on the left side of the page.

6.17. Starting Node-RED 145

http://nodered.org/
http://192.168.7.2:1880

BeagleBone Cookbook

• Drag the twitter node to the canvas, as shown in Node-RED twitter node.

Fig. 6.8: Node-RED twitter node

Authorize Twitter by double-clicking the twitter node. You’ll see the screen shown in Node-RED Twitter autho-
rization, step 1.

Click the pencil button to bring up the dialog box shown in Node-RED twitter authorization, step 2.

• Click the “here” link, as shown in Node-RED twitter authorization, step 2, and you’ll be taken to Twitter
to authorize Node-RED.

• Log in to Twitter and click the “Authorize app” button (Node-RED Twitter site authorization).

• When you’re back to Node-RED, click the Add button, add your Twitter credentials, enter the hashtags to
respond to (Node-RED adding the #BeagleBone hashtag), and then click the Ok button.

• Go back to the left panel, scroll up to the top, and then drag the debug node to the canva- (debug is in
the output section.)

• Connect the two nodes by clicking and dragging (Node-RED Twitter adding debug node and connecting).

• In the right panel, in the upper-right corner, click the “debug” tab.

• Finally, click the Deploy button above the “debug” tab.

Your Node-RED flow is now running on the Bone. Test it by going to Twitter and tweeting something with the
hashtag #BeagleBone. Your Bone is now responding to events happening out in the world.

6.19 Adding an LED Toggle

Now, we’re ready to add the LED toggle:

146 Chapter 6. Internet of Things

BeagleBone Cookbook

Fig. 6.9: Node-RED Twitter authorization, step 1

6.19. Adding an LED Toggle 147

BeagleBone Cookbook

Fig. 6.10: Node-RED twitter authorization, step 2

148 Chapter 6. Internet of Things

BeagleBone Cookbook

Fig. 6.11: Node-RED Twitter site authorization

6.19. Adding an LED Toggle 149

BeagleBone Cookbook

Fig. 6.12: Node-RED adding the #BeagleBone hashtag

150 Chapter 6. Internet of Things

BeagleBone Cookbook

Fig. 6.13: Node-RED Twitter adding debug node and connecting

6.19. Adding an LED Toggle 151

BeagleBone Cookbook

• Wire up an LED as shown in Toggling an External LED. Mine is wired to P9_14.

• Scroll to the bottom of the left panel and drag the bbb-discrete-out node (second from the bottom of the
bbb nodes) to the canvas and wire it (Node-RED adding bbb-discrete-out node).

Fig. 6.14: Node-RED adding bbb-discrete-out node

Double-click the node, select your GPIO pin and “Toggle state,” and then set “Startup as” to 1 (Node-RED
adding bbb-discrete-out configuration).

Click Ok and then Deploy.

Test again. The LED will toggle every time the hashtag #BeagleBone is tweeted. With a little more exploring,
you should be able to have your Bone ringing a bell or spinning a motor in response to tweets.

6.20 Communicating over a Serial Connection to an Arduino or
LaunchPad

6.20.1 Problem

You would like your Bone to talk to an Arduino or LaunchPad.

6.20.2 Solution

The common serial port (also known as a UART) is the simplest way to talk between the two. Wire it up as
shown in Wiring a LaunchPad to a Bone via the common serial port.

152 Chapter 6. Internet of Things

BeagleBone Cookbook

Fig. 6.15: Node-RED adding bbb-discrete-out configuration

6.20. Communicating over a Serial Connection to an Arduino or LaunchPad 153

BeagleBone Cookbook

Warning: BeagleBone Black runs at 3.3 V. When wiring other devices to it, ensure that they are also 3.3 V.
The LaunchPad I’m using is 3.3 V, but many Arduinos are 5.0 V and thus won’t work. Or worse, they might
damage your Bone.

Fig. 6.16: Wiring a LaunchPad to a Bone via the common serial port

Add the code (or sketch, as it’s called in Arduino-speak) in LaunchPad code for communicating via the UART
(launchPad.ino) to a file called launchPad.ino and run it on your LaunchPad.

Listing 6.17: LaunchPad code for communicating via the UART (launch-
Pad.ino)

1 /*
2 Tests connection to a BeagleBone
3 Mark A. Yoder
4 Waits for input on Serial Port
5 g - Green toggle
6 r - Red toggle
7 */
8 char inChar = 0; // incoming serial byte
9 int red = 0;
10 int green = 0;
11

12 void setup()
13 {
14 // initialize the digital pin as an output.
15 pinMode(RED_LED, OUTPUT); // �
16 pinMode(GREEN_LED, OUTPUT);
17 // start serial port at 9600 bps:
18 Serial.begin(9600); // �
19 Serial.print(”Command (r, g): ”); // �
20

21 digitalWrite(GREEN_LED, green); // �
22 digitalWrite(RED_LED, red);
23 }

(continues on next page)

154 Chapter 6. Internet of Things

BeagleBone Cookbook

(continued from previous page)

24

25 void loop()
26 {
27 if(Serial.available() > 0) { // �
28 inChar = Serial.read();
29 switch(inChar) { // �
30 case 'g':
31 green = ~green;
32 digitalWrite(GREEN_LED, green);
33 Serial.println(”Green”);
34 break;
35 case 'r':
36 red = ~red;
37 digitalWrite(RED_LED, red);
38 Serial.println(”Red”);
39 break;
40 }
41 Serial.print(”Command (r, g): ”);
42 }
43 }
44

launchPad.ino

① Set the mode for the built-in red and green LEDs.

② Start the serial port at 9600 baud.

③ Prompt the user, which in this case is the Bone.

④ Set the LEDs to the current values of the red and green variables.

⑤ Wait for characters to arrive on the serial port.

⑥ After the characters are received, read it and respond to it.

On the Bone, add the script in Code for communicating via the UART (launchPad.js) to a file called launchPad.js
and run it.

Listing 6.18: Code for communicating via the UART (launchPad.js)

1 #!/usr/bin/env node
2 // Need to add exports.serialParsers = m.module.parsers;
3 // to /usr/local/lib/node_modules/bonescript/serial.js
4 var b = require('bonescript');
5

6 var port = '/dev/ttyO1'; // �
7 var options = {
8 baudrate: 9600, // �
9 parser: b.serialParsers.readline(”\n”) // �
10 };
11

12 b.serialOpen(port, options, onSerial); // �
13

14 function onSerial(x) { // �
15 console.log(x.event);
16 if (x.err) {
17 console.log('***ERROR*** ' + JSON.stringify(x));
18 }
19 if (x.event == 'open') {
20 console.log('***OPENED***');
21 setInterval(sendCommand, 1000); // �
22 }
23 if (x.event == 'data') {

(continues on next page)

6.20. Communicating over a Serial Connection to an Arduino or LaunchPad 155

BeagleBone Cookbook

(continued from previous page)

24 console.log(String(x.data));
25 }
26 }
27

28 var command = ['r', 'g']; // �
29 var commIdx = 1;
30

31 function sendCommand() {
32 // console.log('Command: ' + command[commIdx]);
33 b.serialWrite(port, command[commIdx++]); // �
34 if(commIdx >= command.length) { // �
35 commIdx = 0;
36 }
37 }

launchPad.js

① Select which serial port to use. Table of UART outputs sows what’s available. We’ve wired P9_24 and P9_26,
so we are using serial port /dev/ttyO1. (Note that’s the letter O and not the number zero.)

② Set the baudrate to 9600, which matches the setting on the LaunchPad.

③ Read one line at a time up to the newline character (n).

④ Open the serial port and call onSerial() whenever there is data available.

⑤ Determine what event has happened on the serial port and respond to it.

⑥ If the serial port has been opened, start calling sendCommand() every 1000 ms.

⑦ These are the two commands to send.

⑧ Write the character out to the serial port and to the LaunchPad.

⑨ Move to the next command.

Fig. 6.17: Table of UART outputs

156 Chapter 6. Internet of Things

BeagleBone Cookbook

6.20.3 Discussion

When you run the script in Code for communicating via the UART (launchPad.js), the Bone opens up the serial
port and every second sends a new command, either r or g. The LaunchPad waits for the command, when it
arrives, responds by toggling the corresponding LED.

6.20. Communicating over a Serial Connection to an Arduino or LaunchPad 157

BeagleBone Cookbook

158 Chapter 6. Internet of Things

Chapter 7

The Kernel

The kernel is the heart of the Linux operating system. It’s the software that takes the low-level requests, such
as reading or writing files, or reading and writing general-purpose input/output (GPIO) pins, and maps them to
the hardware. When you install a new version of the OS (Verifying You Have the Latest Version of the OS on
Your Bone), you get a certain version of the kernel.

You usually won’t need to mess with the kernel, but sometimes you might want to try something new that
requires a different kernel. This chapter shows how to switch kernels. The nice thing is you can have multiple
kernels on your system at the same time and select from among them which to boot up.

7.1 Updating the Kernel

7.1.1 Problem

You have an out-of-date kernel and want to make it current.

7.1.2 Solution

Use the following command to determine which kernel you are running:

bone$ uname -a
Linux beaglebone 5.10.168-ti-r62 #1bullseye SMP PREEMPT Tue May 23 20:15:00␣
↪→UTC 2023 armv7l GNU/Linux
GNU/Linux

The 5.10.168-ti-r62 string is the kernel version.

To update to the current kernel, ensure that your Bone is on the Internet (Sharing the Host’s Internet Connection
over USB or Establishing an Ethernet-Based Internet Connection) and then run the following commands:

bone$ apt-cache pkgnames | grep linux-image | sort | less
...
linux-image-5.10.162-ti-r59
linux-image-5.10.162-ti-rt-r56
linux-image-5.10.162-ti-rt-r57
linux-image-5.10.162-ti-rt-r58
linux-image-5.10.162-ti-rt-r59
linux-image-5.10.168-armv7-lpae-x71
linux-image-5.10.168-armv7-rt-x71
linux-image-5.10.168-armv7-x71
linux-image-5.10.168-bone71
linux-image-5.10.168-bone-rt-r71

(continues on next page)

159

BeagleBone Cookbook

(continued from previous page)

linux-image-5.10.168-ti-r60
linux-image-5.10.168-ti-r61
linux-image-5.10.168-ti-r62
linux-image-5.10.168-ti-rt-r60
linux-image-5.10.168-ti-rt-r61
linux-image-5.10.168-ti-rt-r62
...

bone$ sudo apt install linux-image-5.10.162-ti-rt-r59
bone$ sudo reboot

bone$ uname -a
Linux beaglebone 5.10.162-ti-rt-r59 #1 SMP PREEMPT Wed Nov 19 21:11:08 UTC␣
↪→2014 armv7l
GNU/Linux

The first command lists the versions of the kernel that are available. The second command installs one. After
you have rebooted, the new kernel will be running.

If the current kernel is doing its job adequately, you probably don’t need to update, but sometimes a new
software package requires a more up-to-date kernel. Fortunately, precompiled kernels are available and ready
to download.

Seeing which kernels are installed

You can have multiple kernels install at the same time. T hey are saved in /boot

bone$ cd /boot
bone$ ls
config-5.10.168-ti-r62 initrd.img-5.10.168-ti-r63 uboot ␣
↪→ vmlinuz-5.10.168-ti-r63
config-5.10.168-ti-r63 SOC.sh uEnv.txt
dtbs System.map-5.10.168-ti-r62 uEnv.txt.orig
initrd.img-5.10.168-ti-r62 System.map-5.10.168-ti-r63 vmlinuz-5.10.168-ti-
↪→r62

Here I have two kernel versions installed.

Bone

On the Bone (Not the Play) the file uEnv.txt tells which kernel to use on the next reboot. Here are the first few
lines:

Line
1 #Docs: http://elinux.org/Beagleboard:U-boot_partitioning_layout_2.0
2
3 # uname_r=4.14.108-ti-r137
4 uname_r=4.19.94-ti-r50
5 # uname_r=5.4.52-ti-r17
6 #uuid=

Lines 3-5 list the various kernels, and the uncommented one on line 4 is the one that will be used next time.
You will have to add your own uname’s. Get the names from the files in /boot. Be careful, if you mistype the
name your Bone won’t boot.

Play

On the Play you can see which version of the kernel will boot next by:

160 Chapter 7. The Kernel

BeagleBone Cookbook

play$ cat /boot/firmware/kversion
5.10.168-ti-arm64-r106

If you want to change the version run:

bone$ sudo apt install linux-image-5.10.168-ti-arm64-r105 --reinstall

7.2 Building and Installing Kernel Modules

7.2.1 Problem

You need to use a peripheral for which there currently is no driver, or you need to improve the performance of
an interface previously handled in user space.

7.2.2 Solution

The solution is to run in kernel space by building a kernel module. There are entire books on writing Linux
Device Drivers. This recipe assumes that the driver has already been written and shows how to compile and
install it. After you’ve followed the steps for this simple module, you will be able to apply them to any other
module.

For our example module, add the code in Simple Kernel Module (hello.c) to a file called hello.c.

Listing 7.1: Simple Kernel Module (hello.c)

1 #include <linux/module.h> /* Needed by all modules */
2 #include <linux/kernel.h> /* Needed for KERN_INFO */
3 #include <linux/init.h> /* Needed for the macros */
4

5 static int __init hello_start(void)
6 {
7 printk(KERN_INFO ”Loading hello module...\n”);
8 printk(KERN_INFO ”Hello, World!\n”);
9 return 0;
10 }
11

12 static void __exit hello_end(void)
13 {
14 printk(KERN_INFO ”Goodbye Boris\n”);
15 }
16

17 module_init(hello_start);
18 module_exit(hello_end);
19

20 MODULE_AUTHOR(”Boris Houndleroy”);
21 MODULE_DESCRIPTION(”Hello World Example”);
22 MODULE_LICENSE(”GPL”);

hello.c

When compiling on the Bone, all you need to do is load the Kernel Headers for the version of the kernel you’re
running:

bone$ sudo apt install linux-headers-`uname -r`

Note: The quotes around uname -r are backtick characters. On a United States keyboard, the backtick
key is to the left of the 1 key.

7.2. Building and Installing Kernel Modules 161

https://bootlin.com/doc/books/ldd3.pdf
https://bootlin.com/doc/books/ldd3.pdf

BeagleBone Cookbook

This took a little more than three minutes on my Bone. The uname -r part of the command looks up what
version of the kernel you are running and loads the headers for it.

Note: If you don’t have a network connection you can get the headers from the running kernel with the
following.

sudo modprobe kheaders
rm -rf $HOME/headers
mkdir -p $HOME/headers
tar -xvf /sys/kernel/kheaders.tar.xz -C $HOME/headers > /dev/null
cd my-kernel-module
make -C $HOME/headers M=$(pwd) modules
sudo rmmod kheaders

The modprobe kheaders makes the /sys/kernel/kheaders.tar.xz appear.

Next, add the code in Simple Kernel Module (Makefile) to a file called Makefile.

Listing 7.2: Simple Kernel Module (Makefile)

1 obj-m := hello.o
2 KDIR := /lib/modules/$(shell uname -r)/build
3

4 all:
5 <TAB>make -C $(KDIR) M=$$PWD
6

7 clean:
8 <TAB>rm hello.mod.c hello.o modules.order hello.mod.o Module.symvers

Makefile.display

Note: Replace the two instances of <TAB> with a tab character (the key left of the Q key on a United States
keyboard). The tab characters are very important to makefiles and must appear as shown.

Now, compile the kernel module by using the make command:

bone$ make
make -C /lib/modules/5.10.168-ti-r62/build M=$PWD
make[1]: Entering directory '/usr/src/linux-headers-5.10.168-ti-r62'
CC [M] /home/debian/docs.beagleboard.io/books/beaglebone-cookbook/code/
↪→07kernel/hello.o
MODPOST /home/debian/docs.beagleboard.io/books/beaglebone-cookbook/code/
↪→07kernel/Module.symvers
CC [M] /home/debian/docs.beagleboard.io/books/beaglebone-cookbook/code/
↪→07kernel/hello.mod.o
LD [M] /home/debian/host/BeagleBoard/docs.beagleboard.io/books/beaglebone-
↪→cookbook/code/07kernel/hello.ko
make[1]: Leaving directory '/usr/src/linux-headers-5.10.168-ti-r62'

bone$ ls
Makefile hello.c hello.mod.c hello.o
Module.symvers hello.ko hello.mod.o modules.order

Notice that several files have been created. hello.ko is the one you want. Try a couple of commands with
it:

bone$ modinfo hello.ko
filename: /home/debian/host/BeagleBoard/docs.beagleboard.io/books/
↪→beaglebone-cookbook/code/07kernel/hello.ko
license: GPL

(continues on next page)

162 Chapter 7. The Kernel

BeagleBone Cookbook

(continued from previous page)

description: Hello World Example
author: Boris Houndleroy
depends:
name: hello
vermagic: 5.10.168-ti-r62 SMP preempt mod_unload modversions ARMv7 p2v8

bone$ sudo insmod hello.ko
bone$ dmesg | tail -4
[377.944777] lm75 1-004a: hwmon1: sensor 'tmp101'
[377.944976] i2c i2c-1: new_device: Instantiated device tmp101 at 0x4a
[85819.772666] Loading hello module...
[85819.772687] Hello, World!

The first command displays information about the module. The insmod command inserts the module into the
running kernel. If all goes well, nothing is displayed, but the module does print something in the kernel log.
The dmesg command displays the messages in the log, and the tail -4 command shows the last four messages.
The last two messages are from the module. It worked!

7.3 Compiling the Kernel

7.3.1 Problem

You need to download, patch, and compile the kernel from its source code.

7.3.2 Solution

This is easier than it sounds, thanks to some very powerful scripts.

Warning: Be sure to run this recipe on your host computer. The Bone has enough computational power
to compile a module or two, but compiling the entire kernel takes lots of time and resources.

7.4 Downloading and Compiling the Kernel

To download and compile the kernel, follow these steps:

host$ git clone https://git.beagleboard.org/RobertCNelson/ti-linux-kernel-
↪→dev # �
host$ cd ti-linux-kernel-dev
host$ git checkout ti-linux-5.10.y # �
host$./build_deb.sh # �

Note: If you are using a 64 bit Bone, git checkout ti-linux-arm64-5.10.y

① The first command clones a repository with the tools to build the kernel for the Bone.

② When you know which kernel to try, use git checkout to check it out. This command checks out branch
ti-linux-5.10.y.

③ build_deb.sh is the master builder. If needed, it will download the cross compilers needed to compile the
kernel (gcc is the current cross compiler). If there is a kernel at ~/linux-dev, it will use it; otherwise, it
will download a copy to ti-linux-kernel-dev/ignore/linux-src. It will then patch the kernel
so that it will run on the Bone.

7.3. Compiling the Kernel 163

https://gcc.gnu.org/

BeagleBone Cookbook

Note: build_deb.sh may ask you to install additional files. Just run sudo apt install *files* to install them.

After the kernel is patched, you’ll see a screen similar to Kernel configuration menu, on which you can configure
the kernel.

Fig. 7.1: Kernel configuration menu

You can use the arrow keys to navigate. No changes need to be made, so you can just press the right arrow
and Enter to start the kernel compiling. The entire process took about 25 minutes on my 8-core host.

The ti-linux-kernel-dev/KERNEL directory contains the source code for the kernel. The
ti-linux-kernel-dev/deploy directory contains the compiled kernel and the files needed to run
it.

7.5 Installing the Kernel on the Bone

The ./build_deb.sh script creates a single .deb file that contains all the files needed for the new kernel. You
find it here:

host$ cd ti-linux-kernel-dev/deploy
host$ ls -sh
total 40M
7.7M linux-headers-5.10.168-ti-r62_1xross_armhf.deb 8.0K linux-upstream_

(continues on next page)

164 Chapter 7. The Kernel

BeagleBone Cookbook

(continued from previous page)

↪→1xross_armhf.buildinfo
33M linux-image-5.10.168-ti-r62_1xross_armhf.deb 4.0K linux-upstream_
↪→1xross_armhf.changes
1.1M linux-libc-dev_1xross_armhf.deb

The linux-image- file is the one we want. It contains over 3000 files.

host$ dpkg -c linux-image-5.10.168-ti-r62_1xross_armhf.deb | wc
3251 19506 379250

The dpkg command lists all the files in the .deb file and the wc counts all the lines in the output. You can see
those files with:

host$ dpkg -c linux-image-5.10.168-ti-r62_1xross_armhf.deb | less
drwxr-xr-x root/root 0 2023-06-12 12:57 ./
drwxr-xr-x root/root 0 2023-06-12 12:57 ./boot/
-rw-r--r-- root/root 4763113 2023-06-12 12:57 ./boot/System.map-5.10.168-
↪→ti-r62
-rw-r--r-- root/root 191331 2023-06-12 12:57 ./boot/config-5.10.168-ti-r62
drwxr-xr-x root/root 0 2023-06-12 12:57 ./boot/dtbs/
drwxr-xr-x root/root 0 2023-06-12 12:57 ./boot/dtbs/5.10.168-ti-r62/
-rwxr-xr-x root/root 90644 2023-06-12 12:57 ./boot/dtbs/5.10.168-ti-r62/
↪→am335x-baltos-ir2110.dtb
-rwxr-xr-x root/root 91362 2023-06-12 12:57 ./boot/dtbs/5.10.168-ti-r62/
↪→am335x-baltos-ir3220.dtb
-rwxr-xr-x root/root 91633 2023-06-12 12:57 ./boot/dtbs/5.10.168-ti-r62/
↪→am335x-baltos-ir5221.dtb
-rwxr-xr-x root/root 88684 2023-06-12 12:57 ./boot/dtbs/5.10.168-ti-r62/
↪→am335x-base0033.dtb

You can see it’s putting things in the /boot directory.

Note: You can also look into the other two .deb files and see what they install.

Move the linux-image- file to your Bone.

host$ scp linux-image-5.10.168-ti-r62_1xross_armhf.deb bone:.

You might have to use debian@192.168.7.2 for bone if you haven’t set everything up.

Now ssh to the bone.

host$ ssh bone
bone$ ls -sh
bin exercises linux-image-5.10.168-ti-r62_1xross_armhf.deb

Now install it.

bone$ sudo dpkg --install linux-image-5.10.168-ti-r62_1xross_armhf.deb

Wait a while. (Mine took almore 2 minutes.) Once done check /boot.

bone$ ls -sh /boot
total 40M
160K config-4.19.94-ti-r50 4.0K SOC.sh 4.0K uEnv.
↪→txt.orig
180K config-5.10.168-ti-r62 3.5M System.map-4.19.94-ti-r50 9.7M␣
↪→vmlinuz-4.19.94-ti-r50
4.0K dtbs 4.1M System.map-5.10.168-ti-r62 8.6M␣
↪→vmlinuz-5.10.168-ti-r62
6.4M initrd.img-4.19.94-ti-r50 4.0K uboot
6.8M initrd.img-5.10.168-ti-r62 4.0K uEnv.txt

7.5. Installing the Kernel on the Bone 165

mailto:debian@192.168.7.2

BeagleBone Cookbook

You see the new kernel files along with the old files. Check uEnv.txt.

bone$ head /boot/uEnv.txt
#Docs: http://elinux.org/Beagleboard:U-boot_partitioning_layout_2.0
uname_r=4.19.94-ti-r50
uname_r=5.10.168-ti-r62

I added the commented out uname_r line to make it easy to switch between versions of the kernel.

Reboot and test out the new kernel.

bone$ sudo reboot

7.6 Installin a Cross Compiler

7.6.1 Problem

You want to compile on your host computer and run on the Beagle.

7.6.2 Solution

Run the following:

32-bit

host$ sudo apt install gcc-arm-linux-gnueabihf

64-bit

host$ sudo apt install gcc-aarch64-linux-gnu

Note: From now on use arm if you are using a 32-bit machine and aarch64 if you are using a 64-bit machine.

This installs a cross compiler, but you need to set up a couple of things so that it can be found. At the command
prompt, enter arm-<TAB><TAB> to see what was installed.

host$ arm-<TAB><TAB>
arm-linux-gnueabihf-addr2line arm-linux-gnueabihf-gcc-nm arm-
↪→linux-gnueabihf-ld.bfd
arm-linux-gnueabihf-ar arm-linux-gnueabihf-gcc-nm-11 arm-
↪→linux-gnueabihf-ld.gold
arm-linux-gnueabihf-as arm-linux-gnueabihf-gcc-ranlib arm-
↪→linux-gnueabihf-lto-dump-11
arm-linux-gnueabihf-c++filt arm-linux-gnueabihf-gcc-ranlib-11 arm-
↪→linux-gnueabihf-nm
arm-linux-gnueabihf-cpp arm-linux-gnueabihf-gcov arm-
↪→linux-gnueabihf-objcopy
arm-linux-gnueabihf-cpp-11 arm-linux-gnueabihf-gcov-11 arm-
↪→linux-gnueabihf-objdump
arm-linux-gnueabihf-dwp arm-linux-gnueabihf-gcov-dump arm-
↪→linux-gnueabihf-ranlib
arm-linux-gnueabihf-elfedit arm-linux-gnueabihf-gcov-dump-11 arm-
↪→linux-gnueabihf-readelf

(continues on next page)

166 Chapter 7. The Kernel

BeagleBone Cookbook

(continued from previous page)

arm-linux-gnueabihf-gcc arm-linux-gnueabihf-gcov-tool arm-
↪→linux-gnueabihf-size
arm-linux-gnueabihf-gcc-11 arm-linux-gnueabihf-gcov-tool-11 arm-
↪→linux-gnueabihf-strings
arm-linux-gnueabihf-gcc-ar arm-linux-gnueabihf-gprof arm-
↪→linux-gnueabihf-strip
arm-linux-gnueabihf-gcc-ar-11 arm-linux-gnueabihf-ld

What you see are all the cross-development tools.

7.7 Setting Up Variables

Now, set up a couple of variables to know which compiler you are using:

host$ export ARCH=arm
host$ export CROSS_COMPILE=arm-linux-gnueabihf-

These lines set up the standard environmental variables so that you can determine which cross-development
tools to use. Test the cross compiler by adding Simple helloWorld.c to test cross compiling (helloWorld.c) to a
file named _helloWorld.c_.

Listing 7.3: Simple helloWorld.c to test cross compiling (helloWorld.c)

1 #include <stdio.h>
2

3 int main(int argc, char **argv) {
4 printf(”Hello, World! \n”);
5 }

helloWorld.c

You can then cross-compile by using the following commands:

host$ ${CROSS_COMPILE}gcc helloWorld.c
host$ file a.out
a.out: ELF 32-bit LSB executable, ARM, version 1 (SYSV),
dynamically linked (uses shared libs), for GNU/Linux 2.6.31,
BuildID[sha1]=0x10182364352b9f3cb15d1aa61395aeede11a52ad, not stripped

The file command shows that a.out was compiled for an ARM processor.

7.8 Applying Patches

7.8.1 Problem

You have a patch file that you need to apply to the kernel.

7.8.2 Solution

Simple kernel patch file (hello.patch) shows a patch file that you can use on the kernel.

7.7. Setting Up Variables 167

BeagleBone Cookbook

Listing 7.4: Simple kernel patch file (hello.patch)

1 From eaf4f7ea7d540bc8bb57283a8f68321ddb4401f4 Mon Sep 17 00:00:00 2001
2 From: Jason Kridner <jdk@ti.com>
3 Date: Tue, 12 Feb 2013 02:18:03 +0000
4 Subject: [PATCH] hello: example kernel modules
5

6 ---
7 hello/Makefile | 7 +++++++
8 hello/hello.c | 18 ++++++++++++++++++
9 2 files changed, 25 insertions(+), 0 deletions(-)
10 create mode 100644 hello/Makefile
11 create mode 100644 hello/hello.c
12

13 diff --git a/hello/Makefile b/hello/Makefile
14 new file mode 100644
15 index 0000000..4b23da7
16 --- /dev/null
17 +++ b/hello/Makefile
18 @@ -0,0 +1,7 @@
19 +obj-m := hello.o
20 +
21 +PWD := $(shell pwd)
22 +KDIR := ${PWD}/..
23 +
24 +default:
25 + make -C $(KDIR) SUBDIRS=$(PWD) modules
26 diff --git a/hello/hello.c b/hello/hello.c
27 new file mode 100644
28 index 0000000..157d490
29 --- /dev/null
30 +++ b/hello/hello.c
31 @@ -0,0 +1,22 @@
32 +#include <linux/module.h> /* Needed by all modules */
33 +#include <linux/kernel.h> /* Needed for KERN_INFO */
34 +#include <linux/init.h> /* Needed for the macros */
35 +
36 +static int __init hello_start(void)
37 +{
38 + printk(KERN_INFO ”Loading hello module...\n”);
39 + printk(KERN_INFO ”Hello, World!\n”);
40 + return 0;
41 +}
42 +
43 +static void __exit hello_end(void)
44 +{
45 + printk(KERN_INFO ”Goodbye Boris\n”);
46 +}
47 +
48 +module_init(hello_start);
49 +module_exit(hello_end);
50 +
51 +MODULE_AUTHOR(”Boris Houndleroy”);
52 +MODULE_DESCRIPTION(”Hello World Example”);
53 +MODULE_LICENSE(”GPL”);

hello.patch

Here’s how to use it:

• Install the kernel sources (Compiling the Kernel).

• Change to the kernel directory (+cd ti-linux-kernel-dev/KERNEL+).

• Add Simple kernel patch file (hello.patch) to a file named hello.patch in the

168 Chapter 7. The Kernel

BeagleBone Cookbook

ti-linux-kernel-dev/KERNEL directory.

• Run the following commands:

host$ cd ti-linux-kernel-dev/KERNEL
host$ patch -p1 < hello.patch
patching file hello/Makefile
patching file hello/hello.c

The output of the patch command apprises you of what it’s doing. Look in the hello directory to see what
was created:

host$ cd hello
host$ ls
hello.c Makefile

Building and Installing Kernel Modules shows how to build and install a module, and Creating Your Own Patch
File shows how to create your own patch file.

7.9 Creating Your Own Patch File

7.9.1 Problem

You made a few changes to the kernel, and you want to share them with your friends.

7.9.2 Solution

Create a patch file that contains just the changes you have made. Before making your changes, check out a
new branch:

host$ cd ti-linux-kernel-dev/KERNEL
host$ git status
On branch master
nothing to commit (working directory clean)

Good, so far no changes have been made. Now, create a new branch:

host$ git checkout -b hello1
host$ git status
On branch hello1
nothing to commit (working directory clean)

You’ve created a new branch called hello1 and checked it out. Now, make whatever changes to the kernel
you want. I did some work with a simple character driver that we can use as an example:

host$ cd ti-linux-kernel-dev/KERNEL/drivers/char/
host$ git status
On branch hello1
Changes not staged for commit:
(use ”git add file...” to update what will be committed)
(use ”git checkout -- file...” to discard changes in working directory)
#
modified: Kconfig
modified: Makefile
#
Untracked files:
(use ”git add file...” to include in what will be committed)
#

(continues on next page)

7.9. Creating Your Own Patch File 169

BeagleBone Cookbook

(continued from previous page)

examples/
no changes added to commit (use ”git add” and/or ”git commit -a”)

Add the files that were created and commit them:

host$ git add Kconfig Makefile examples
host$ git status
On branch hello1
Changes to be committed:
(use ”git reset HEAD file...” to unstage)
#
modified: Kconfig
modified: Makefile
new file: examples/Makefile
new file: examples/hello1.c
#
host$ git commit -m ”Files for hello1 kernel module”
[hello1 99346d5] Files for hello1 kernel module
4 files changed, 33 insertions(+)
create mode 100644 drivers/char/examples/Makefile
create mode 100644 drivers/char/examples/hello1.c

Finally, create the patch file:

host$ git format-patch master --stdout > hello1.patch

170 Chapter 7. The Kernel

Chapter 8

Real-Time I/O

Sometimes, when BeagleBone Black interacts with the physical world, it needs to respond in a timely manner.
For example, your robot has just detected that one of the driving motors needs to turn a bit faster. Systems
that can respond quickly to a real event are known as real-time systems. There are two broad categories
of real-time systems: soft and hard.

In a soft real-time system, the real-time requirements should be met most of the time, where most
depends on the system. A video playback system is a good example. The goal might be to display 60 frames per
second, but it doesn’t matter much if you miss a frame now and then. In a 100 percent hard real-time
system, you can never fail to respond in time. Think of an airbag deployment system on a car. You can’t even
be 50 ms late.

Systems running Linux generally can’t do 100 percent hard real-time processing, because Linux gets in the
way. However, the Bone has an ARM processor running Linux and two additional 32-bit programmable real-
time units (PRUs Ti AM33XX PRUSSv2) available to do real-time processing. Although the PRUs can achieve
100 percent hard real-time, they take some effort to use.

This chapter shows several ways to do real-time input/output (I/O), starting with the effortless, yet slower
JavaScript and moving up with increasing speed (and effort) to using the PRUs.

Note: In this chapter, as in the others, we assume that you are logged in as debian (as indicated by the bone$
prompt). This gives you quick access to the general-purpose input/output (GPIO) ports but you may have to
use sudo some times.

8.1 I/O with Python and JavaScript

8.1.1 Problem

You want to read an input pin and write it to the output as quickly as possible with JavaScript.

8.1.2 Solution

Reading the Status of a Pushbutton or Magnetic Switch (Passive On/Off Sensor) shows how to read a pushbutton
switch and Toggling an External LED controls an external LED. This recipe combines the two to read the switch
and turn on the LED in response to it. To make this recipe, you will need:

• Breadboard and jumper wires

• Pushbutton switch

• 220R resistor

171

http://bit.ly/1EzTPZv

BeagleBone Cookbook

• LED

Wire up the pushbutton and LED as shown in Diagram for wiring a pushbutton and LED with the LED attached
to P9_14.

Fig. 8.1: Diagram for wiring a pushbutton and LED with the LED attached to P9_14

The code inMonitoring a pushbutton (pushLED.py) reads GPIO port P9_42, which is attached to the pushbutton,
and turns on the LED attached to P9_12 when the button is pushed.

Python

Listing 8.1: Monitoring a pushbutton (pushLED.py)

1 #!/usr/bin/env python
2 # //
3 # // pushLED.py
4 # // Blinks an LED attached to P9_12 when the button at P9_42 is␣

↪→pressed
5 # // Wiring:
6 # // Setup:
7 # // See:
8 # //
9 import time
10 import os
11

12 ms = 50 # Read time in ms
13

14 LED=”50” # Look up P9.14 using gpioinfo | grep -e chip -e P9.14. chip 1,␣
↪→line 18 maps to 50

15 button=”7” # P9_42 mapps to 7
16

17 GPIOPATH=”/sys/class/gpio/”
18

19 # Make sure LED is exported
(continues on next page)

172 Chapter 8. Real-Time I/O

BeagleBone Cookbook

(continued from previous page)

20 if (not os.path.exists(GPIOPATH+”gpio”+LED)):
21 f = open(GPIOPATH+”export”, ”w”)
22 f.write(LED)
23 f.close()
24

25 # Make it an output pin
26 f = open(GPIOPATH+”gpio”+LED+”/direction”, ”w”)
27 f.write(”out”)
28 f.close()
29

30 # Make sure button is exported
31 if (not os.path.exists(GPIOPATH+”gpio”+button)):
32 f = open(GPIOPATH+”export”, ”w”)
33 f.write(button)
34 f.close()
35

36 # Make it an output pin
37 f = open(GPIOPATH+”gpio”+button+”/direction”, ”w”)
38 f.write(”in”)
39 f.close()
40

41 # Read every ms
42 fin = open(GPIOPATH+”gpio”+button+”/value”, ”r”)
43 fout = open(GPIOPATH+”gpio”+LED+”/value”, ”w”)
44

45 while True:
46 fin.seek(0)
47 fout.seek(0)
48 fout.write(fin.read())
49 time.sleep(ms/1000)

pushLED.py

c

Listing 8.2: Code for reading a switch and blinking an LED (pushLED.c)

1 //
2 // blinkLED.c
3 // Blinks the P9_14 pin based on the P9_42 pin
4 // Wiring:
5 // Setup:
6 // See:
7 //
8 #include <stdio.h>
9 #include <string.h>
10 #include <unistd.h>
11 #define MAXSTR 100
12

13 int main() {
14 FILE *fpbutton, *fpLED;
15 char LED[] = ”50”; // Look up P9.14 using gpioinfo | grep -e chip -e P9.

↪→14. chip 1, line 18 maps to 50
16 char button[] = ”7”; // Look up P9.42 using gpioinfo | grep -e chip -e P9.

↪→42. chip 0, line 7 maps to 7
17 char GPIOPATH[] = ”/sys/class/gpio”;
18 char path[MAXSTR] = ””;
19

20 // Make sure LED is exported
21 snprintf(path, MAXSTR, ”%s%s%s”, GPIOPATH, ”/gpio”, LED);

(continues on next page)

8.1. I/O with Python and JavaScript 173

BeagleBone Cookbook

(continued from previous page)

22 if (!access(path, F_OK) == 0) {
23 snprintf(path, MAXSTR, ”%s%s”, GPIOPATH, ”/export”);
24 fpLED = fopen(path, ”w”);
25 fprintf(fpLED, ”%s”, LED);
26 fclose(fpLED);
27 }
28

29 // Make it an output LED
30 snprintf(path, MAXSTR, ”%s%s%s%s”, GPIOPATH, ”/gpio”, LED, ”/direction”);
31 fpLED = fopen(path, ”w”);
32 fprintf(fpLED, ”out”);
33 fclose(fpLED);
34

35 // Make sure bbuttonutton is exported
36 snprintf(path, MAXSTR, ”%s%s%s”, GPIOPATH, ”/gpio”, button);
37 if (!access(path, F_OK) == 0) {
38 snprintf(path, MAXSTR, ”%s%s”, GPIOPATH, ”/export”);
39 fpbutton = fopen(path, ”w”);
40 fprintf(fpbutton, ”%s”, button);
41 fclose(fpbutton);
42 }
43

44 // Make it an input button
45 snprintf(path, MAXSTR, ”%s%s%s%s”, GPIOPATH, ”/gpio”, button, ”/direction

↪→”);
46 fpbutton = fopen(path, ”w”);
47 fprintf(fpbutton, ”in”);
48 fclose(fpbutton);
49

50 // I don't know why I can open the LED outside the loop and use fseek␣
↪→before

51 // each read, but I can't do the same for the button. It appears it needs
52 // to be opened every time.
53 snprintf(path, MAXSTR, ”%s%s%s%s”, GPIOPATH, ”/gpio”, LED, ”/value”);
54 fpLED = fopen(path, ”w”);
55

56 char state = '0';
57

58 while (1) {
59 snprintf(path, MAXSTR, ”%s%s%s%s”, GPIOPATH, ”/gpio”, button, ”/value”);
60 fpbutton = fopen(path, ”r”);
61 fseek(fpLED, 0L, SEEK_SET);
62 fscanf(fpbutton, ”%c”, &state);
63 printf(”state: %c\n”, state);
64 fprintf(fpLED, ”%c”, state);
65 fclose(fpbutton);
66 usleep(250000); // sleep time in microseconds
67 }
68 }

bone$ gcc -o pushLED pushLED.c -lgpiod
bone$./pushLED
1
1
0
0
0
1
^C

pushLED.c

174 Chapter 8. Real-Time I/O

BeagleBone Cookbook

JavaScript

Listing 8.3: Monitoring a pushbutton (pushLED.js)

1 #!/usr/bin/env node
2 //
3 // pushLED.js
4 // Blinks an LED attached to P9_12 when the button at P9_42 is pressed
5 // Wiring:
6 // Setup:
7 // See:
8 //
9 const fs = require(”fs”);
10

11 const ms = 500 // Read time in ms
12

13 const LED=”50”; // Look up P9.14 using gpioinfo | grep -e chip -e P9.14. ␣
↪→chip 1, line 18 maps to 50

14 const button=”7”; // P9_42 mapps to 7
15

16 GPIOPATH=”/sys/class/gpio/”;
17

18 // Make sure LED is exported
19 if(!fs.existsSync(GPIOPATH+”gpio”+LED)) {
20 fs.writeFileSync(GPIOPATH+”export”, LED);
21 }
22 // Make it an output pin
23 fs.writeFileSync(GPIOPATH+”gpio”+LED+”/direction”, ”out”);
24

25 // Make sure button is exported
26 if(!fs.existsSync(GPIOPATH+”gpio”+button)) {
27 fs.writeFileSync(GPIOPATH+”export”, button);
28 }
29 // Make it an input pin
30 fs.writeFileSync(GPIOPATH+”gpio”+button+”/direction”, ”in”);
31

32 // Read every ms
33 setInterval(flashLED, ms);
34

35 function flashLED() {
36 var data = fs.readFileSync(GPIOPATH+”gpio”+button+”/value”).slice(0, -1);
37 console.log('data = ' + data);
38 fs.writeFileSync(GPIOPATH+”gpio”+LED+”/value”, data);
39 }

pushLED.js

Add the code to a file named pushLED.py and run it by using the following commands:

bone$ chmod *x pushLED.py
bone$./pushLED.py
Hit ^C to stop
0
0
1
1
^C

Press ^C (Ctrl-C) to stop the code.

8.2 I/O with devmem2

8.2. I/O with devmem2 175

BeagleBone Cookbook

8.2.1 Problem

Your C code isn’t responding fast enough to the input signal. You want to read the GPIO registers directly.

8.2.2 Solution

The solution is to use a simple utility called devmem2, with which you can read and write registers from the
command line.

Warning: This solution is much more involved than the previous ones. You need to understand binary
and hex numbers and be able to read the AM335x Technical Reference Manual.

First, download and install devmem2:

bone$ wget http://bootlin.com/pub/mirror/devmem2.c
bone$ gcc -o devmem2 devmem2.c
bone$ sudo mv devmem2 /usr/bin

This solution will read a pushbutton attached to P9_42 and flash an LED attached to P9_13. Note that this is a
change from the previous solutions that makes the code used here much simpler. Wire up your Bone as shown
in Diagram for wiring a pushbutton and LED with the LED attached to P9_13.

Fig. 8.2: Diagram for wiring a pushbutton and LED with the LED attached to P9_13

Now, flash the LED attached to P9_13 using the Linux sysfs interface (Controlling GPIOs by Using SYSFS Entries).
To do this, first look up which GPIO number P9_13 is attached to by referring to Mapping from header pin to
internal GPIO number. Finding P9_13 at GPIO 31, export GPIO 31 and make it an output:

bone$ cd cd /sys/class/gpio/
bone$ echo 31 > export
bone$ cd gpio31
bone$ echo out > direction

(continues on next page)

176 Chapter 8. Real-Time I/O

http://bit.ly/1B4Cm45

BeagleBone Cookbook

(continued from previous page)

bone$ echo 1 > value
bone$ echo 0 > value

The LED will turn on when 1 is echoed into value and off when 0 is echoed.

Now that you know the LED is working, look up its memory address. This is where things get very detailed.
First, download the AM335x Technical Reference Manual. Look up GPIO0 in the Memory Map chapter (sen-
sors). Table 2-2 indicates that GPIO0 starts at address 0x44E0_7000. Then go to Section 25.4.1, “GPIO Regis-
ters.” This shows that GPIO_DATAIN has an offset of 0x138, GPIO_CLEARDATAOUT has an offset of 0x190, and
GPIO_SETDATAOUT has an offset of 0x194.

This means you read from address 0x44E0_7000 + 0x138 = 0x44E0_7138 to see the status of the LED:

bone$ sudo devmem2 0x44E07138
/dev/mem opened.
Memory mapped at address 0xb6f8e000.
Value at address 0x44E07138 (0xb6f8e138): 0xC000C404

The returned value 0xC000C404 (1100 0000 0000 0000 1100 0100 0000 0100 in binary) has bit 31 set to 1,
which means the LED is on. Turn the LED off by writing 0x80000000 (1000 0000 0000 0000 0000 0000 0000
0000 binary) to the GPIO_CLEARDATA register at 0x44E0_7000 + 0x190 = 0x44E0_7190:

bone$ sudo devmem2 0x44E07190 w 0x80000000
/dev/mem opened.
Memory mapped at address 0xb6fd7000.
Value at address 0x44E07190 (0xb6fd7190): 0x80000000
Written 0x80000000; readback 0x0

The LED is now off.

You read the pushbutton switch in a similar way. Mapping from header pin to internal GPIO number says P9_42
is GPIO 7, which means bit 7 is the state of P9_42. The devmem2 in this example reads 0x0, which means all
bits are 0, including GPIO 7. Section 25.4.1 of the Technical Reference Manual instructs you to use offset 0x13C
to read GPIO_DATAOUT. Push the pushbutton and run devmem2:

bone$ sudo devmem2 0x44e07138
/dev/mem opened.
Memory mapped at address 0xb6fe2000.
Value at address 0x44E07138 (0xb6fe2138): 0x4000C484

Here, bit 7 is set in 0x4000C484, showing the button is pushed.

This is much more tedious than the previous methods, but it’s what’s necessary if you need to minimize the
time to read an input. I/O with C and mmap() shows how to read and write these addresses from C.

8.3 I/O with C and mmap()

8.3.1 Problem

Your C code isn’t responding fast enough to the input signal.

8.3.2 Solution

In smaller processors that aren’t running an operating system, you can read and write a given memory address
directly from C. With Linux running on Bone, many of the memory locations are hardware protected, so you
can’t accidentally access them directly.

This recipe shows how to use mmap() (memory map) to map the GPIO registers to an array in C. Then all you
need t o do is access the array to read and write the registers.

8.3. I/O with C and mmap() 177

http://bit.ly/1B4Cm45

BeagleBone Cookbook

Warning: This solution is much more involved than the previous ones. You need to understand binary
and hex numbers and be able to read the AM335x Technical Reference Manual.

This solution will read a pushbutton attached to P9_42 and flash an LED attached to P9_13. Note that this is a
change from the previous solutions that makes the code used here much simpler.

Tip: See I/O with devmem2 for details on mapping the GPIO numbers to memory addresses.

Add the code in Memory address definitions (pushLEDmmap.h) to a file named pushLEDmmap.h.

Listing 8.4: Memory address definitions (pushLEDmmap.h)

1 // From: http://stackoverflow.com/questions/13124271/driving-beaglebone-gpio
2 // -through-dev-mem
3 // user contributions licensed under cc by-sa 3.0 with attribution required
4 // http://creativecommons.org/licenses/by-sa/3.0/
5 // http://blog.stackoverflow.com/2009/06/attribution-required/
6 // Author: madscientist159 (http://stackoverflow.com/users/3000377/

↪→madscientist159)
7

8 #ifndef _BEAGLEBONE_GPIO_H_
9 #define _BEAGLEBONE_GPIO_H_
10

11 #define GPIO0_START_ADDR 0x44e07000
12 #define GPIO0_END_ADDR 0x44e08000
13 #define GPIO0_SIZE (GPIO0_END_ADDR - GPIO0_START_ADDR)
14

15 #define GPIO1_START_ADDR 0x4804C000
16 #define GPIO1_END_ADDR 0x4804D000
17 #define GPIO1_SIZE (GPIO1_END_ADDR - GPIO1_START_ADDR)
18

19 #define GPIO2_START_ADDR 0x41A4C000
20 #define GPIO2_END_ADDR 0x41A4D000
21 #define GPIO2_SIZE (GPIO2_END_ADDR - GPIO2_START_ADDR)
22

23 #define GPIO3_START_ADDR 0x41A4E000
24 #define GPIO3_END_ADDR 0x41A4F000
25 #define GPIO3_SIZE (GPIO3_END_ADDR - GPIO3_START_ADDR)
26

27 #define GPIO_DATAIN 0x138
28 #define GPIO_SETDATAOUT 0x194
29 #define GPIO_CLEARDATAOUT 0x190
30

31 #define GPIO_03 (1<<3)
32 #define GPIO_07 (1<<7)
33 #define GPIO_31 (1<<31)
34 #define GPIO_60 (1<<28)
35 #endif

pushLEDmmap.h

Add the code in Code for directly reading memory addresses (pushLEDmmap.c) to a file named
pushLEDmmap.c.

Listing 8.5: Code for directly reading memory addresses (pushLED-
mmap.c)

1 // From: http://stackoverflow.com/questions/13124271/driving-beaglebone-gpio
2 // -through-dev-mem
3 // user contributions licensed under cc by-sa 3.0 with attribution required

(continues on next page)

178 Chapter 8. Real-Time I/O

BeagleBone Cookbook

(continued from previous page)

4 // http://creativecommons.org/licenses/by-sa/3.0/
5 // http://blog.stackoverflow.com/2009/06/attribution-required/
6 // Author: madscientist159 (http://stackoverflow.com/users/3000377/

↪→madscientist159)
7 //
8 // Read one gpio pin and write it out to another using mmap.
9 // Be sure to set -O3 when compiling.
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <sys/mman.h>
13 #include <fcntl.h>
14 #include <signal.h> // Defines signal-handling functions (i.e. trap Ctrl-

↪→C)
15 #include ”pushLEDmmap.h”
16

17 // Global variables
18 int keepgoing = 1; // Set to 0 when Ctrl-c is pressed
19

20 // Callback called when SIGINT is sent to the process (Ctrl-C)
21 void signal_handler(int sig) {
22 printf(”\nCtrl-C pressed, cleaning up and exiting...\n”);
23 keepgoing = 0;
24 }
25

26 int main(int argc, char *argv[]) {
27 volatile void *gpio_addr;
28 volatile unsigned int *gpio_datain;
29 volatile unsigned int *gpio_setdataout_addr;
30 volatile unsigned int *gpio_cleardataout_addr;
31

32 // Set the signal callback for Ctrl-C
33 signal(SIGINT, signal_handler);
34

35 int fd = open(”/dev/mem”, O_RDWR);
36

37 printf(”Mapping %X - %X (size: %X)\n”, GPIO0_START_ADDR, GPIO0_END_ADDR,
38 GPIO0_SIZE);
39

40 gpio_addr = mmap(0, GPIO0_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd,
41 GPIO0_START_ADDR);
42

43 gpio_datain = gpio_addr + GPIO_DATAIN;
44 gpio_setdataout_addr = gpio_addr + GPIO_SETDATAOUT;
45 gpio_cleardataout_addr = gpio_addr + GPIO_CLEARDATAOUT;
46

47 if(gpio_addr == MAP_FAILED) {
48 printf(”Unable to map GPIO\n”);
49 exit(1);
50 }
51 printf(”GPIO mapped to %p\n”, gpio_addr);
52 printf(”GPIO SETDATAOUTADDR mapped to %p\n”, gpio_setdataout_addr);
53 printf(”GPIO CLEARDATAOUT mapped to %p\n”, gpio_cleardataout_addr);
54

55 printf(”Start copying GPIO_07 to GPIO_31\n”);
56 while(keepgoing) {
57 if(*gpio_datain & GPIO_07) {
58 *gpio_setdataout_addr= GPIO_31;
59 } else {
60 *gpio_cleardataout_addr = GPIO_31;
61 }
62 //usleep(1);

(continues on next page)

8.3. I/O with C and mmap() 179

BeagleBone Cookbook

(continued from previous page)

63 }
64

65 munmap((void *)gpio_addr, GPIO0_SIZE);
66 close(fd);
67 return 0;
68 }

pushLEDmmap.c

Now, compile and run the code:

bone$ gcc -O3 pushLEDmmap.c -o pushLEDmmap
bone$ sudo ./pushLEDmmap
Mapping 44E07000 - 44E08000 (size: 1000)
GPIO mapped to 0xb6fac000
GPIO SETDATAOUTADDR mapped to 0xb6fac194
GPIO CLEARDATAOUT mapped to 0xb6fac190
Start copying GPIO_07 to GPIO_31
^C
Ctrl-C pressed, cleaning up and exiting...

The code is in a tight while loop that checks the status of GPIO 7 and copies it to GPIO 31.

8.4 Tighter Delay Bounds with the PREEMPT_RT Kernel

8.4.1 Problem

You want to run real-time processes on the Beagle, but the OS is slowing things down.

8.4.2 Solution

The Kernel can be compiled with PREEMPT_RT enabled which reduces the delay fromwhen a thread is scheduled
to when it runs.

Switching to a PREEMPT_RT kernel is rather easy, but be sure to follow the steps in the Discussion to see how
much the latencies are reduced.

• First see which kernel you are running:

bone$ uname -a
Linux breadboard-home 5.10.120-ti-r47 #1bullseye SMP PREEMPT Tue Jul 12␣
↪→18:59:38 UTC 2022 armv7l GNU/Linux

I’m running a 5.10 kernel. Remember the whole string, 5.10.120-ti-r47, for later.

• Go to kernel update and look for 5.10.

In The regular and RT kernels you see the reular kernel on top and the RT below.

• We want the RT one.

bone$ sudo apt update
bone$ sudo apt install bbb.io-kernel-5.10-ti-rt-am335x

Note: Use the am57xx if you are using the BeagleBoard AI or AI64.

• Before rebooting, edit /boot/uEnv.txt to start with:

180 Chapter 8. Real-Time I/O

https://forum.beagleboard.org/t/debian-10-x-11-x-kernel-updates/30928

BeagleBone Cookbook

Fig. 8.3: The regular and RT kernels

#Docs: http://elinux.org/Beagleboard:U-boot_partitioning_layout_2.0

uname_r=5.10.120-ti-r47
uname_r=5.10.120-ti-rt-r47
#uuid=
#dtb=

uname_r tells the boot loader which kernel to boot. Here we’ve commented out the regular kernel and left in
the RT kernel. Next time you boot you’ll be running the RT kernel. Don’t reboot just yet. Let’s gather some
latency data first.

Bootlin’s preempt_rt workshop looks like a good workshop on PREEMPT RT. Their slides say:

• One way to implement a multi-task Real-Time Operating System is to have a preemptible system

• Any task can be interrupted at any point so that higher priority tasks can run

• Userspace preemption already exists in Linux

• The Linux Kernel also supports real-time scheduling policies

• However, code that runs in kernel mode isn’t fully preemptible

• The Preempt-RT patch aims at making all code running in kernel mode preemptible

The workshop goes into many details on how to get real-time performance on Linux. Checkout their slides and
labs. Though you can skip the first lab since we present a simpler way to get the RT kernel running.

8.5 Cyclictest

cyclictest is one tool for measuring the latency from when a thread is schduled and when it runs. The code/rt
directory in the git repo has some scripts for gathering latency data and plotting it. Here’s how to run the
scripts.

• First look in rt/install.sh to see what to install.

Listing 8.6: rt/install.sh

1 sudo apt install rt-tests
2 # You can run gnuplot on the host
3 sudo apt install gnuplot

rt/install.sh

8.5. Cyclictest 181

https://bootlin.com/doc/training/preempt-rt/
https://bootlin.com/doc/training/preempt-rt/preempt-rt-slides.pdf
https://bootlin.com/doc/training/preempt-rt/preempt-rt-labs.pdf

BeagleBone Cookbook

• Open up another window and start something that will create a load on the Bone, then run the following:

bone$ time sudo ./hist.gen > nort.hist

hist.gen shows what’s being run. It defaults to 100,000 loops, so it takes a while. The data is saved in nort.hist,
which stands for no RT histogram.

Listing 8.7: hist.gen

1 #!/bin/sh
2 # This code is from Julia Cartwright julia@kernel.org
3

4 cyclictest -m -S -p 90 -h 400 -l ”${1:-100000}”

rt/hist.gen

Note: If you get an error:

Unable to change scheduling policy! Probably missing capabilities, either run as root or increase RLIMIT_RTPRIO
limits

try running ./setup.sh. If that doesn’t work try:

bone$ sudo bash
bone# ulimit -r unlimited
bone# ./hist.gen > nort.hist
bone# exit

• Now you are ready to reboot into the RT kernel and run the test again.

bone$ reboot

• After rebooting:

bone$ uname -a
Linux breadboard-home 5.10.120-ti-rt-r47 #1bullseye SMP PREEMPT RT Tue Jul␣
↪→12 18:59:38 UTC 2022 armv7l GNU/Linux

Congratulations you are running the RT kernel.

Note: If the Beagle appears to be running (the LEDs are flashing) but you are having trouble connecting via
ssh 192.168.7.2, you can try connecting using the approach shown in Viewing and Debugging the Kernel and
u-boot Messages at Boot Time.

Now run the script again (note it’s being saved in rt.hist this time.)

bone$ time sudo ./hist.gen > rt.hist

Note: At this point yoou can edit /boot/uEnt.txt to boot the non RT kernel and reboot.

Now it’s time to plot the results.

bone$ gnuplot hist.plt

This will generate the file cyclictest.png which contains your plot. It should look like:

Notice the NON-RT data have much longer latenices. They may not happen often (fewer than 10 times in each
bin), but they are occurring and may be enough to miss a real-time deadline.

The PREEMPT-RT times are all under a 150 us.

182 Chapter 8. Real-Time I/O

BeagleBone Cookbook

Fig. 8.4: Histogram of Non-RT and RT kernels running cyclictest

8.5. Cyclictest 183

BeagleBone Cookbook

8.6 I/O with simpPRU

8.6.1 Problem

You require better timing than running C on the ARM can give you.

8.6.2 Solution

The AM335x processor on the Bone has an ARM processor that is running Linux, but it also has two 32-bit PRUs
that are available for processing I/O. It takes a fair amount of understanding to program the PRU. Fortunately,
simpPRU is an intuitive language for PRU which compiles down to PRU C. This solution shows how to use it.

8.7 Background

simpPRU

184 Chapter 8. Real-Time I/O

https://simppru.readthedocs.io/en/latest/

Chapter 9

Capes

Previous chapters of this book show a variety of ways to interface BeagleBone Black to the physical world by
using a breadboard and wiring to the +P8+ and +P9+ headers. This is a great approach because it’s easy to
modify your circuit to debug it or try new things. At some point, though, you might want a more permanent
solution, either because you need to move the Bone and you don’t want wires coming loose, or because you
want to share your hardware with the masses.

You can easily expand the functionality of the Bone by adding a cape. A cape is simply a board–often a printed
circuit board (PCB) that connects to the P8 and P9 headers and follows a few standard pin usages. You can
stack up to four capes onto the Bone. Capes can range in size covering a few pins to much larger than the
Bone.

Todo: Add cape examples of various sizes

This chapter shows how to attach a couple of capes, move your design to a protoboard, then to a PCB, and
finally on to mass production.

Todo: Update display cape example

9.1 Connecting Multiple Capes

9.1.1 Problem

You want to use more than one cape at a time.

9.1.2 Solution

First, look at each cape that you want to stack mechanically. Are they all using stacking headers like the ones
shown in Stacking headers? No more than one should be using non-stacking headers.

Note that larger LCD panels might provide expansion headers, such as the ones shown in LCD Backside, rather
than the stacking headers, and that those can also be used for adding additional capes.

185

http://bit.ly/1wucweC

BeagleBone Cookbook

Fig. 9.1: Stacking headers

186 Chapter 9. Capes

BeagleBone Cookbook

9.2 LCD Backside

Note: Back side of LCD7 cape, LCD Backside was originally posted by CircuitCo at http://elinux.org/File:
BeagleBone-LCD-Backside.jpg under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Note: #TODO# One of the 4D Systems LCD capes would make a better example for an LCD cape. The
CircuitCo cape is no longer available.

Next, take a note of each pin utilized by each cape. The BeagleBone Capes catalog provides a graphical
representation for the pin usage of most capes, as shown in Audio cape pins for the Circuitco Audio Cape.

Note: #TODO# Bela would make a better example for an audio cape. The CircuitCo cape is no longer
available.

9.3 Audio cape pins

Note: Pins utilized by CircuitCo Audio Cape, Audio cape pins was originally posted by Djackson at http:
//elinux.org/File:Audio_pins_revb.png under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

In most cases, the same pin should never be used on two different capes, though in some cases, pins can be
shared. Here are some exceptions:

• GND

9.2. LCD Backside 187

http://elinux.org/File:BeagleBone-LCD-Backside.jpg
http://elinux.org/File:BeagleBone-LCD-Backside.jpg
http://creativecommons.org/licenses/by-sa/3.0/
https://beagleboard.org/capes
http://elinux.org/File:Audio_pins_revb.png
http://elinux.org/File:Audio_pins_revb.png
http://creativecommons.org/licenses/by-sa/3.0/

BeagleBone Cookbook

188 Chapter 9. Capes

BeagleBone Cookbook

– The ground (GND) pins should be shared between the capes, and there’s no need to worry
about consumed resources on those pins.

• VDD_3V3

– The 3.3 V power supply (VDD_3V3) pins can be shared by all capes to supply power, but the
total combined consumption of all the capes should be less than 500 mA (250 mA per VDD_3V3
pin).

• VDD_5V
The 5.0 V power supply (VDD_5V) pins can be shared by all capes to supply power, but the total
combined consumption of all the capes should be less than 2 A (1 A per +VDD_5V+ pin). It is
possible for one, and only one, of the capes to provide power to this pin rather than consume it,
and it should provide at least 3 A to ensure proper system function. Note that when no voltage
is applied to the DC connector, nor from a cape, these pins will not be powered, even if power is
provided via USB.

• SYS_5V
The regulated 5.0 V power supply (SYS_5V) pins can be shared by all capes to supply power, but
the total combined consumption of all the capes should be less than 500 mA (250 mA per SYS_5V
pin).

• VADC and AGND

– The ADC reference voltage pins can be shared by all capes.

• I2C2_SCL and I2C2_SDA

– I2C is a shared bus, and the I2C2_SCL and I2C2_SDA pins default to having this bus enabled for
use by cape expansion ID EEPROMs.

9.4 Moving from a Breadboard to a Protoboard

9.4.1 Problem

You have your circuit working fine on the breadboard, but you want a more reliable solution.

9.4.2 Solution

Solder your components to a protoboard.

To make this recipe, you will need:

• Protoboard

• Soldering iron

• Your other components

Many places make premade circuit boards that are laid out like the breadboard we have been using. The
Adafruit Proto Cape Kit is one protoboard option.

BeagleBone Breadboard

Note: This was originally posted byWilliam Traynor at http://elinux.org/File:BeagleBone-Breadboard.jpg under
a Creative Commons Attribution-ShareAlike 3.0 Unported License

You just solder your parts on the protoboard as you had them on the breadboard.

9.4. Moving from a Breadboard to a Protoboard 189

https://www.adafruit.com/product/572
http://elinux.org/File:BeagleBone-Breadboard.jpg
http://creativecommons.org/licenses/by-sa/3.0/

BeagleBone Cookbook

9.5 Creating a Prototype Schematic

9.5.1 Problem

You’ve wired up a circuit on a breadboard. How do you turn that prototype into a schematic others can read
and that you can import into other design tools?

9.5.2 Solution

In Fritzing tips, we introduced Fritzing as a useful tool for drawing block diagrams. Fritzing can also do circuit
schematics and printed-circuit layout. For example, A simple robot controller diagram (quickBot.fzz) shows
a block diagram for a simple robot controller (quickBot.fzz is the name of the Fritzing file used to create the
diagram).

The controller has an H-bridge to drive two DC motors (Controlling the Speed and Direction of a DC Motor),
an IR range sensor, and two headers for attaching analog encoders for the motors. Both the IR sensor and
the encoders have analog outputs that exceed 1.8 V, so each is run through a voltage divider (two resistors)
to scale the voltage to the correct range (see Reading a Distance Sensor (Variable Pulse Width Sensor) for a
voltage divider example).

Automatically generated schematic shows the schematic automatically generated by Fritzing. It’s a mess. It’s
up to you to fix it.

Cleaned-up schematic shows my cleaned-up schematic. I did it by moving the parts around until it looked
better.

You might find that you want to create your design in a more advanced design tool, perhaps because it has the
library components you desire, it integrates better with other tools you are using, or it has some other feature
(such as simulation) of which you’d like to take advantage.

9.6 Verifying Your Cape Design

9.6.1 Problem

You’ve got a design. How do you quickly verify that it works?

190 Chapter 9. Capes

BeagleBone Cookbook

Fig. 9.2: A simple robot controller diagram (quickBot.fzz)

Fig. 9.3: Automatically generated schematic

9.6. Verifying Your Cape Design 191

BeagleBone Cookbook

Fig. 9.4: Cleaned-up schematic
192 Chapter 9. Capes

BeagleBone Cookbook

Fig. 9.5: Zoomed-in schematic

9.6.2 Solution

To make this recipe, you will need:

• An oscilloscope

Break down your design into functional subcomponents and write tests for each. Use components you already
know are working, such as the onboard LEDs, to display the test status with the code in Testing the quickBot
motors interface (quickBot_motor_test.js).

9.7 Testing the quickBot motors interface (quickBot_motor_test.js)

#!/usr/bin/env node
var b = require('bonescript');
var M1_SPEED = 'P9_16'; // �
var M1_FORWARD = 'P8_15';
var M1_BACKWARD = 'P8_13';
var M2_SPEED = 'P9_14';
var M2_FORWARD = 'P8_9';
var M2_BACKWARD = 'P8_11';
var freq = 50; // �
var fast = 0.95;
var slow = 0.7;
var state = 0; // �

b.pinMode(M1_FORWARD, b.OUTPUT); // �
b.pinMode(M1_BACKWARD, b.OUTPUT);
b.pinMode(M2_FORWARD, b.OUTPUT);
b.pinMode(M2_BACKWARD, b.OUTPUT);
b.analogWrite(M1_SPEED, 0, freq); // �
b.analogWrite(M2_SPEED, 0, freq);

updateMotors(); // �

function updateMotors() {
//console.log(”Setting state = ” + state); // �
updateLEDs(state);
switch(state) { // �

case 0:
default:

M1_set(0); // �
(continues on next page)

9.7. Testing the quickBot motors interface (quickBot_motor_test.js) 193

BeagleBone Cookbook

(continued from previous page)

M2_set(0);
state = 1; // �
break;

case 1:
M1_set(slow);
M2_set(slow);
state = 2;
break;

case 2:
M1_set(slow);
M2_set(-slow);
state = 3;
break;

case 3:
M1_set(-slow);
M2_set(slow);
state = 4;
break;

case 4:
M1_set(fast);
M2_set(fast);
state = 0;
break;

}
setTimeout(updateMotors, 2000); // �

}

function updateLEDs(state) { // �
switch(state) {
case 0:

b.digitalWrite(”USR0”, b.LOW);
b.digitalWrite(”USR1”, b.LOW);
b.digitalWrite(”USR2”, b.LOW);
b.digitalWrite(”USR3”, b.LOW);
break;

case 1:
b.digitalWrite(”USR0”, b.HIGH);
b.digitalWrite(”USR1”, b.LOW);
b.digitalWrite(”USR2”, b.LOW);
b.digitalWrite(”USR3”, b.LOW);
break;

case 2:
b.digitalWrite(”USR0”, b.LOW);
b.digitalWrite(”USR1”, b.HIGH);
b.digitalWrite(”USR2”, b.LOW);
b.digitalWrite(”USR3”, b.LOW);
break;

case 3:
b.digitalWrite(”USR0”, b.LOW);
b.digitalWrite(”USR1”, b.LOW);
b.digitalWrite(”USR2”, b.HIGH);
b.digitalWrite(”USR3”, b.LOW);
break;

case 4:
b.digitalWrite(”USR0”, b.LOW);
b.digitalWrite(”USR1”, b.LOW);
b.digitalWrite(”USR2”, b.LOW);
b.digitalWrite(”USR3”, b.HIGH);
break;

}
}

(continues on next page)

194 Chapter 9. Capes

BeagleBone Cookbook

(continued from previous page)

function M1_set(speed) { // �
speed = (speed > 1) ? 1 : speed; // �
speed = (speed < -1) ? -1 : speed;
b.digitalWrite(M1_FORWARD, b.LOW);
b.digitalWrite(M1_BACKWARD, b.LOW);
if(speed > 0) {

b.digitalWrite(M1_FORWARD, b.HIGH);
} else if(speed < 0) {

b.digitalWrite(M1_BACKWARD, b.HIGH);
}
b.analogWrite(M1_SPEED, Math.abs(speed), freq); // �

}

function M2_set(speed) {
speed = (speed > 1) ? 1 : speed;
speed = (speed < -1) ? -1 : speed;
b.digitalWrite(M2_FORWARD, b.LOW);
b.digitalWrite(M2_BACKWARD, b.LOW);
if(speed > 0) {

b.digitalWrite(M2_FORWARD, b.HIGH);
} else if(speed < 0) {

b.digitalWrite(M2_BACKWARD, b.HIGH);
}
b.analogWrite(M2_SPEED, Math.abs(speed), freq);

① Define each pin as a variable. This makes it easy to change to another pin if you decide that is necessary.

② Make other simple parameters variables. Again, this makes it easy to update them. When creating this test,
I found that the PWM frequency to drive the motors needed to be relatively low to get over the kickback shown
in quickBot motor test showing kickback. I also found that I needed to get up to about 70 percent duty cycle
for my circuit to reliably start the motors turning.

③ Use a simple variable such as state to keep track of the test phase. This is used in a switch statement to
jump to the code to configure for that test phase and updated after configuring for the current phase in order
to select the next phase. Note that the next phase isn’t entered until after a two-second delay, as specified in
the call to setTimeout().

④ Perform the initial setup of all the pins.

⑤ The first time a PWM pin is used, it is configured with the update frequency. It is important to set this just
once to the right frequency, because other PWM channels might use the same PWM controller, and attempts
to reset the PWM frequency might fail. The pinMode() function doesn’t have an argument for providing the
update frequency, so use the analogWrite() function, instead. You can review using the PWM in Controlling a
Servo Motor.

⑥ updateMotors() is the test function for the motors and is defined after all the setup and initialization code.
The code calls this function every two seconds using the setTimeout() JavaScript function. The first call is used
to prime the loop.

⑦ The call to console.log() was initially here to observe the state transitions in the debug console, but it was
replaced with the updateLEDs() call. Using the USER LEDsmakes it possible to note the state transitions without
having visibility of the debug console. updateLEDs() is defined later.

⑧ The M1_set() and M2_set() functions are defined near the bottom and do the work of configuring the motor
drivers into a particular state. They take a single argument of speed, as defined between -1 (maximum reverse),
0 (stop), and 1 (maximum forward).

⑨ Perform simple bounds checking to ensure that speed values are between -1 and 1.

⑩ The analogWrite() call uses the absolute value of speed, making any negative numbers a positive magnitude.

Using the solution in Basics, you can untether from your coding station to test your design at your lab work-
bench, as shown in quickBot motor test code under scope.

9.7. Testing the quickBot motors interface (quickBot_motor_test.js) 195

BeagleBone Cookbook

Fig. 9.6: quickBot motor test showing kickback

196 Chapter 9. Capes

BeagleBone Cookbook

Fig. 9.7: quickBot motor test code under scope

9.7. Testing the quickBot motors interface (quickBot_motor_test.js) 197

BeagleBone Cookbook

SparkFun provides a useful guide to using an oscilloscope. You might want to check it out if you’ve never used
an oscilloscope before. Looking at the stimulus you’ll generate before you connect up your hardware will help
you avoid surprises.

9.8 Laying Out Your Cape PCB

9.8.1 Problem

You’ve generated a diagram and schematic for your circuit and verified that they are correct. How do you
create a PCB?

9.8.2 Solution

If you’ve been using Fritzing, all you need to do is click the PCB tab, and there’s your board. Well, almost.
Much like the schematic view shown in Creating a Prototype Schematic, you need to do some layout work
before it’s actually usable. I just moved the components around until they seemed to be grouped logically and
then clicked the Autoroute button. After a minute or two of trying various layouts, Fritzing picked the one it
determined to be the best. Simple robot PCB shows the results.

Fig. 9.8: Simple robot PCB

The Fritzing pre-fab web page has a few helpful hints, including checking the widths of all your traces and
cleaning up any questionable routing created by the autorouter.

The PCB in Simple robot PCB is a two-sided board. One color (or shade of gray in the printed book) represents
traces on one side of the board, and the other color (or shade of gray) is the other side. Sometimes, you’ll see
a trace come to a small circle and then change colors. This is where it is switching sides of the board through
what’s called a via. One of the goals of PCB design is to minimize the number of vias.

Simple robot PCB wasn’t my first try or my last. My approach was to see what was needed to hook where and
move the components around to make it easier for the autorouter to carry out its job.

198 Chapter 9. Capes

http://bit.ly/18AzuoR
http://bit.ly/1HCxokQ

BeagleBone Cookbook

Note: There are entire books and websites dedicated to creating PCB layouts. Look around and see what you
can find. SparkFun’s guide to making PCBs is particularly useful.

9.9 Customizing the Board Outline

One challenge that slipped my first pass review was the board outline. The part we installed in Fritzing tips is
meant to represent BeagleBone Black, not a cape, so the outline doesn’t have the notch cut out of it for the
Ethernet connector.

The Fritzing custom PCB outline page describes how to create and use a custom board outline. Although it is
possible to use a drawing tool like Inkscape, I chose to use the SVG path command directly to create Outline
SVG for BeagleBone cape (beaglebone_cape_boardoutline.svg).

Listing 9.1: Outline SVG for BeagleBone cape (beagle-
bone_cape_boardoutline.svg)

1 <?xml version='1.0' encoding='UTF-8' standalone='no'?>
2 <svg xmlns=”http://www.w3.org/2000/svg” version=”1.1”
3 width=”306” height=”193.5”> <!-- � -->
4 <g id=”board”> <!-- � -->
5 <path fill=”#338040” id=”boardoutline” d=”M 22.5,0 l 0,56 L 72,56
6 q 5,0 5,5 l 0,53.5 q 0,5 -5,5 L 0,119.5 L 0,171 Q 0,193.5 22.5,193.5
7 l 238.5,0 c 24.85281,0 45,-20.14719 45,-45 L 306,45
8 C 306,20.14719 285.85281,0 261,0 z”/> <!-- � -->
9 </g>
10 </svg>

① This is a standard SVG header. The width and height are set based on the BeagleBone outline provided in
the Adafruit library.

② Fritzing requires the element to be within a layer called board

③ Fritzing requires the color to be #338040 and the layer to be called boardoutline. The units end up being
1/90 of an inch. That is, take the numbers in the SVG code and divide by 90 to get the numbers from the
System Reference Manual.

The measurements are taken from the beagleboneblack-mechanical section of the BeagleBone Black System
Reference Manual, as shown in Cape dimensions.

You can observe the rendered output of Outline SVG for BeagleBone cape (beaglebone_cape_boardoutline.svg)
quickly by opening the file in a web browser, as shown in Rendered cape outline in Chrome.

9.10 Fritzing tips

After you have the SVG outline, you’ll need to select the PCB in Fritzing and select a custom shape in the
Inspector box. Begin with the original background, as shown in PCB with original board, without notch for
Ethernet connector.

Hide all but the Board Layer (PCB with all but the Board Layer hidden).

Select the PCB1 object and then, in the Inspector pane, scroll down to the “load image file” button (Clicking
:load image file: with PCB1 selected).

Navigate to the beaglebone_cape_boardoutline.svg file created in Outline SVG for BeagleBone cape (beagle-
bone_cape_boardoutline.svg), as shown in Selecting the .svg file.

Turn on the other layers and line up the Board Layer with the rest of the PCB, as shown in PCB Inspector.

Now, you can save your file and send it off to be made, as described in Producing a Prototype.

9.9. Customizing the Board Outline 199

http://bit.ly/1wXTLki
https://fritzing.org/pcb-custom-shape/
https://inkscape.org/en/
https://www.w3schools.com/graphics/svg_path.asp

BeagleBone Cookbook

Fig. 9.9: Cape dimensions

200 Chapter 9. Capes

BeagleBone Cookbook

Fig. 9.10: Rendered cape outline in Chrome

Fig. 9.11: PCB with original board, without notch for Ethernet connector

9.10. Fritzing tips 201

BeagleBone Cookbook

Fig. 9.12: PCB with all but the Board Layer hidden

Fig. 9.13: Clicking :load image file: with PCB1 selected

202 Chapter 9. Capes

BeagleBone Cookbook

Fig. 9.14: Selecting the .svg file

Fig. 9.15: PCB Inspector

9.10. Fritzing tips 203

BeagleBone Cookbook

9.11 PCB Design Alternatives

There are other free PCB design programs. Here are a few.

9.11.1 EAGLE

Eagle PCB and DesignSpark PCB are two popular design programs. Many capes (and other PCBs) are designed
with Eagle PCB, and the files are available. For example, the MiniDisplay cape has the schematic shown in
Schematic for the MiniDisplay cape and PCB shown in PCB for MiniDisplay cape.

Fig. 9.16: Schematic for the MiniDisplay cape

Note: #TODO#: The MiniDisplay cape is not currently available, so this example should be updated.

A good starting point is to take the PCB layout for the MiniDisplay and edit it for your project. The connectors
for P8 and P9 are already in place and ready to go.

Eagle PCB is a powerful system with many good tutorials online. The free version runs on Windows, Mac, and
Linux, but it has three limitations:

• The usable board area is limited to 100 x 80 mm (4 x 3.2 inches).

• You can use only two signal layers (Top and Bottom).

• The schematic editor can create only one sheet.

You can install Eagle PCB on your Linux host by using the following command:

204 Chapter 9. Capes

https://en.wikipedia.org/wiki/EAGLE_(program)
https://en.wikipedia.org/wiki/DesignSpark_PCB
https://en.wikipedia.org/wiki/EAGLE_(program)#License_model

BeagleBone Cookbook

Fig. 9.17: PCB for MiniDisplay cape

host$ sudo apt install eagle
Reading package lists... Done
Building dependency tree
Reading state information... Done
...
Setting up eagle (6.5.0-1) ...
Processing triggers for libc-bin (2.19-0ubuntu6.4) ...
host$ eagle

You’ll see the startup screen shown in Eagle PCB startup screen.

Fig. 9.18: Eagle PCB startup screen

Click “Run as Freeware.” When my Eagle started, it said it needed to be updated. To update on Linux, follow
the link provided by Eagle and download eagle-lin-7.2.0.run (or whatever version is current.). Then run the
following commands:

host$ chmod +x eagle-lin-7.2.0.run
host$./eagle-lin-7.2.0.run

A series of screens will appear. Click Next. When you see a screen that looks like The Eagle installation
destination directory, note the Destination Directory.

Continue clicking Next until it’s installed. Then run the following commands (where ~/eagle-7.2.0 is the path
you noted in The Eagle installation destination directory):

9.11. PCB Design Alternatives 205

BeagleBone Cookbook

Fig. 9.19: The Eagle installation destination directory

206 Chapter 9. Capes

BeagleBone Cookbook

host$ cd /usr/bin
host$ sudo rm eagle
host$ sudo ln -s ~/eagle-7.2.0/bin/eagle .
host$ cd
host$ eagle

The ls command links eagle in /usr/bin, so you can run +eagle+ from any directory. After eagle starts, you’ll
see the start screen shown in The Eagle start screen.

Fig. 9.20: The Eagle start screen

Ensure that the correct version number appears.

If you are moving a design from Fritzing to Eagle, see Migrating a Fritzing Schematic to Another Tool for tips on
converting from one to the other.

9.11.2 DesignSpark PCB

The free DesignSpark doesn’t have the same limitations as Eagle PCB, but it runs only on Windows. Also, it
doesn’t seem to have the following of Eagle at this time.

9.11.3 Upverter

In addition to free solutions you run on your desktop, you can also work with a browser-based tool called
Upverter. With Upverter, you can collaborate easily, editing your designs from anywhere on the Internet. It
also provides many conversion options and a PCB fabrication service.

9.11. PCB Design Alternatives 207

http://bit.ly/19cbwS0
https://upverter.com/

BeagleBone Cookbook

Note: Don’t confuse Upverter with Upconverter (Migrating a Fritzing Schematic to Another Tool). Though
their names differ by only three letters, they differ greatly in what they do.

9.11.4 Kicad

Unlike the previously mentioned free (no-cost) solutions, Kicad is open source and provides some features
beyond those of Fritzing. Notably, CircuitHub site (discussed in Putting Your Cape Design into Production)
provides support for uploading Kicad designs.

9.12 Migrating a Fritzing Schematic to Another Tool

9.12.1 Problem

You created your schematic in Fritzing, but it doesn’t integrate with everything you need. How can you move
the schematic to another tool?

9.12.2 Solution

Use the Upverter schematic-file-converter Python script. For example, suppose that you want to convert the
Fritzing file for the diagram shown in A simple robot controller diagram (quickBot.fzz). First, install Upverter.

I found it necessary to install +libfreetype6+ and +freetype-py+ onto my system, but you might not need this
first step:

host$ sudo apt install libfreetype6
Reading package lists... Done
Building dependency tree
Reading state information... Done
libfreetype6 is already the newest version.
0 upgraded, 0 newly installed, 0 to remove and 154 not upgraded.
host$ sudo pip install freetype-py
Downloading/unpacking freetype-py
Running setup.py egg_info for package freetype-py

Installing collected packages: freetype-py
Running setup.py install for freetype-py

Successfully installed freetype-py
Cleaning up...

Note: All these commands are being run on the Linux-based host computer, as shown by the host$ prompt.
Log in as a normal user, not +root+.

Now, install the schematic-file-converter tool:

host$ git clone git@github.com:upverter/schematic-file-converter.git
Cloning into 'schematic-file-converter'...
remote: Counting objects: 22251, done.
remote: Total 22251 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (22251/22251), 39.45 MiB | 7.28 MiB/s, done.
Resolving deltas: 100% (14761/14761), done.
Checking connectivity... done.
Checking out files: 100% (16880/16880), done.

(continues on next page)

208 Chapter 9. Capes

https://www.kicad.org/
http://circuithub.com/
https://github.com/ljmljz/schematic-file-converter

BeagleBone Cookbook

(continued from previous page)

host$ cd schematic-file-converter
host$ sudo python setup.py install
.
.
.
Extracting python_upconvert-0.8.9-py2.7.egg to \

/usr/local/lib/python2.7/dist-packages
Adding python-upconvert 0.8.9 to easy-install.pth file

Installed /usr/local/lib/python2.7/dist-packages/python_upconvert-0.8.9-py2.
↪→7.egg
Processing dependencies for python-upconvert==0.8.9
Finished processing dependencies for python-upconvert==0.8.9
host$ cd ..
host$ python -m upconvert.upconverter -h
usage: upconverter.py [-h] [-i INPUT] [-f TYPE] [-o OUTPUT] [-t TYPE]

[-s SYMDIRS [SYMDIRS ...]] [--unsupported]
[--raise-errors] [--profile] [-v] [--formats]

optional arguments:
-h, --help show this help message and exit
-i INPUT, --input INPUT

read INPUT file in
-f TYPE, --from TYPE read input file as TYPE
-o OUTPUT, --output OUTPUT

write OUTPUT file out
-t TYPE, --to TYPE write output file as TYPE
-s SYMDIRS [SYMDIRS ...], --sym-dirs SYMDIRS [SYMDIRS ...]

specify SYMDIRS to search for .sym files (for gEDA
only)

--unsupported run with an unsupported python version
--raise-errors show tracebacks for parsing and writing errors
--profile collect profiling information
-v, --version print version information and quit
--formats print supported formats and quit

At the time of this writing, Upverter supports the following file types:

File type Support
openjson i/o
kicad i/o
geda i/o
eagle i/o
eaglexml i/o
fritzing in only schematic only
gerber i/o
specctra i/o
image out only
ncdrill out only
bom (csv) out only
netlist (csv) out only

After Upverter is installed, run the file (quickBot.fzz) that generated A simple robot controller diagram
(quickBot.fzz) through Upverter:

host$ python -m upconvert.upconverter -i quickBot.fzz \
-f fritzing -o quickBot-eaglexml.sch -t eaglexml --unsupported
WARNING: RUNNING UNSUPPORTED VERSION OF PYTHON (2.7 > 2.6)
DEBUG:main:parsing quickBot.fzz in format fritzing
host$ ls -l
total 188
-rw-rw-r-- 1 ubuntu 63914 Nov 25 19:47 quickBot-eaglexml.sch

(continues on next page)

9.12. Migrating a Fritzing Schematic to Another Tool 209

BeagleBone Cookbook

(continued from previous page)

-rw-r--r-- 1 ubuntu 122193 Nov 25 19:43 quickBot.fzz
drwxrwxr-x 9 ubuntu 4096 Nov 25 19:42 schematic-file-converter

Output of Upverter conversion shows the output of the conversion.

Fig. 9.21: Output of Upverter conversion

No one said it would be pretty!

I found that Eagle was more generous at reading in the eaglexml format than the eagle format. This also
made it easier to hand-edit any translation issues.

9.13 Producing a Prototype

9.13.1 Problem

You have your PCB all designed. How do you get it made?

9.13.2 Solution

To make this recipe, you will need:

• A completed design

• Soldering iron

210 Chapter 9. Capes

BeagleBone Cookbook

• Oscilloscope

• Multimeter

• Your other components

Upload your design to OSH Park and order a few boards. The OSH Park QuickBot Cape shared project page
shows a resulting shared project page for the quickBot cape created in Laying Out Your Cape PCB. We’ll proceed
to break down how this design was uploaded and shared to enable ordering fabricated PCBs.

Fig. 9.22: The OSH Park QuickBot Cape shared project page

Within Fritzing, click the menu next to “Export for PCB” and choose “Extended Gerber,” as shown in Choosing
“Extended Gerber” in Fritzing. You’ll need to choose a directory in which to save them and then compress them
all into a Zip file. The WikiHow article on creating Zip files might be helpful if you aren’t very experienced at
making these.

Things on the OSH Park website are reasonably self-explanatory. You’ll need to create an account and upload
the Zip file containing the Gerber files you created. If you are a cautious person, you might choose to examine
the Gerber files with a Gerber file viewer first. The Fritzing fabrication FAQ offers several suggestions, including
gerbv for Windows and Linux users.

When your upload is complete, you’ll be given a quote, shown images for review, and presented with options
for accepting and ordering. After you have accepted the design, your list of accepted designs will also include
the option of enabling sharing of your designs so that others can order a PCB, as well. If you are looking to
make some money on your design, you’ll want to go another route, like the one described in Putting Your Cape
Design into Production. QuickBot PCB shows the resulting PCB that arrives in the mail.

Now is a good time to ensure that you have all of your components and a soldering station set up as in Moving
from a Breadboard to a Protoboard, as well as an oscilloscope, as used in Verifying Your Cape Design.

When you get your board, it is often informative to “buzz out” a few connections by using a multimeter. If
you’ve never used a multimeter before, the SparkFun or Adafruit tutorials might be helpful. Set your meter to
continuity testing mode and probe between points where the headers are and where they should be connecting
to your components. This would be more difficult and less accurate after you solder down your components,
so it is a good idea to keep a bare board around just for this purpose.

9.13. Producing a Prototype 211

http://oshpark.com
http://bit.ly/1MtlzAp
http://bit.ly/1Br5lEh
http://bit.ly/1B4GqRU
http://oshpark.com
https://en.wikipedia.org/wiki/Gerber_format
https://aisler.net/partners/fritzing
http://gerbv.geda-project.org/
https://oshpark.com/project_history
https://learn.sparkfun.com/tutorials/how-to-use-a-multimeter/all
http://bit.ly/1Br5Xtv

BeagleBone Cookbook

Fig. 9.23: Choosing “Extended Gerber” in Fritzing

212 Chapter 9. Capes

BeagleBone Cookbook

Fig. 9.24: QuickBot PCB

9.13. Producing a Prototype 213

BeagleBone Cookbook

You’ll also want to examine your board mechanically before soldering parts down. You don’t want to waste
components on a PCB that might need to be altered or replaced.

When you begin assembling your board, it is advisable to assemble it in functional subsections, if possible,
to help narrow down any potential issues. QuickBot motors under test shows the motor portion wired up and
running the test in Testing the quickBot motors interface (quickBot_motor_test.js).

Fig. 9.25: QuickBot motors under test

Continue assembling and testing your board until you are happy. If you find issues, you might choose to cut
traces and use point-to-point wiring to resolve your issues before placing an order for a new PCB. Better right
the second time than the third!

9.14 Creating Contents for Your Cape Configuration EEPROM

9.14.1 Problem

Your cape is ready to go, and you want it to automatically initialize when the Bone boots up.

9.14.2 Solution

Complete capes have an I2C EEPROM on board that contains configuration information that is read at boot
time. Adventures in BeagleBone Cape EEPROMs gives a helpful description of two methods for programming
the EEPROM. How to Roll your own BeagleBone Capes is a good four-part series on creating a cape, including
how to wire and program the EEPROM.

214 Chapter 9. Capes

https://web.archive.org/web/20190108195421/http://azkeller.com:80/blog/?p=62
https://web.archive.org/web/20200222204651/http://papermint-designs.com/community/taxonomy/term/68

BeagleBone Cookbook

Note: The current effort to document how to enable software for a cape is ongoing at capes.

9.15 Putting Your Cape Design into Production

9.15.1 Problem

You want to share your cape with others. How do you scale up?

9.15.2 Solution

CircuitHub offers a great tool to get a quick quote on assembled PCBs. To make things simple, I downloaded
the CircuitCo MiniDisplay Cape Eagle design materials and uploaded them to CircuitHub.

After the design is uploaded, you’ll need to review the parts to verify that CircuitHub has or can order the right
ones. Find the parts in the catalog by changing the text in the search box and clicking the magnifying glass.
When you’ve found a suitable match, select it to confirm its use in your design, as shown in CircuitHub part
matching.

Fig. 9.26: CircuitHub part matching

When you’ve selected all of your parts, a quote tool appears at the bottom of the page, as shown in CircuitHub
quote generation.

Checking out the pricing on the MiniDisplay Cape (without including the LCD itself) in CircuitHub price examples
(all prices USD), you can get a quick idea of how increased volume can dramatically impact the per-unit costs.

9.15. Putting Your Cape Design into Production 215

https://circuithub.com/
https://elinux.org/MiniDisplay_Cape

BeagleBone Cookbook

Fig. 9.27: CircuitHub quote generation

Table 9.1: CircuitHub price examples (all prices USD)

Quantity 1 10 100 1000 10,000
PCB $208.68 $21.75 $3.30 $0.98 $0.90
Parts $11.56 $2.55 $1.54 $1.01 $0.92
Assembly $249.84 $30.69 $7.40 $2.79 $2.32
Per unit $470.09 $54.99 $12.25 $4.79 $4.16
Total $470.09 $550.00 $1,225.25 $4,796.00 $41,665.79

Checking the Crystalfontz web page for the LCD, you can find the prices for the LCDs as well, as shown in LCD
pricing (USD).

Table 9.2: LCD pricing (USD)

Quantity 1 10 100 1000 10,000
Per unit $12.12 $7.30 $3.86 $2.84 $2.84
Total $12.12 $73.00 $386.00 $2,840.00 $28,400.00

To enable more cape developers to launch their designs to the market, CircuitHub has launched a group buy
campaign site. You, as a cape developer, can choose how much markup you need to be paid for your work and
launch the campaign to the public. Money is only collected if and when the desired target quantity is reached,
so there’s no risk that the boards will cost too much to be affordable. This is a great way to cost-effectively
launch your boards to market!

There’s no real substitute for getting to know your contract manufacturer, its capabilities, communication style,
strengths, and weaknesses. Look around your town to see if anyone is doing this type of work and see if they’ll
give you a tour.

Note: Don’t confuse CircuitHub and CircuitCo. CircuitCo is closed.

216 Chapter 9. Capes

http://bit.ly/1GF6xqE
https://hackaday.com/2014/11/13/circuithub-launches-group-buy-crowdsourcing-campaigns/
https://hackaday.com/2014/11/13/circuithub-launches-group-buy-crowdsourcing-campaigns/

Chapter 10

Parts and Suppliers

The following tables list where you can find the parts used in this book. We have listed only one or two sources
here, but you can often find a given part in many places.

Table 10.1: United States suppliers

Supplier Website Notes
Adafruit http://www.adafruit.com Good for modules and parts
Amazon http://www.amazon.com/ Carries everything
Digikey http://www.digikey.com/ Wide range of components
MakerShed http://www.makershed.com/ Good for modules, kits, and tools
SeeedStudio https://www.seeedstudio.com/SBC-Beaglebone-Original-c-2031.html? Low-cost modules
SparkFun http://www.sparkfun.com Good for modules and parts

Table 10.2: Other suppliers

Supplier Website Notes
Ele-
ment14

http://element14.com/
BeagleBone

World-wide BeagleBoard.org-compliant clone of BeagleBone Black, carries many ac-
cessories

10.1 Prototyping Equipment

Many of the hardware projects in this book use jumper wires and a breadboard. We prefer the preformed wires
that lie flat on the board. Jumper wires lists places with jumper wires, and Breadboards shows where you can
get breadboards.

Table 10.3: Jumper wires

Supplier Website
Amazon http://www.amazon.com/Elenco-Piece-Pre-formed-Jumper-Wire/dp/B0002H7AIG
Digikey http://www.digikey.com/product-detail/en/TW-E012-000/438-1049-ND/643115
SparkFun https://www.sparkfun.com/products/124

217

http://www.adafruit.com
http://www.amazon.com/
http://www.digikey.com/
http://www.makershed.com/
https://www.seeedstudio.com/SBC-Beaglebone-Original-c-2031.html
http://www.sparkfun.com
http://element14.com/BeagleBone
http://element14.com/BeagleBone
http://www.amazon.com/Elenco-Piece-Pre-formed-Jumper-Wire/dp/B0002H7AIG
http://www.digikey.com/product-detail/en/TW-E012-000/438-1049-ND/643115
https://www.sparkfun.com/products/124

BeagleBone Cookbook

Table 10.4: Breadboards

Sup-
plier

Website

Ama-
zon

http://www.amazon.com/s/ref=nb_sb_noss_1?url=search-alias%3Dtoys-and-games&field-keywords=breadboards&
sprefix=breadboards%2Ctoys-and-games

Digikey https://www.digikey.com/en/products/filter/solderless-breadboards/638
Spark-
Fun

https://www.sparkfun.com/search/results?term=breadboard

Cir-
cuitCo

https://elinux.org/BeagleBoneBreadboard (no longer manufactured, but design available)

If you want something more permanent, try Adafruit’s Perma-Proto Breadboard, laid out like a breadboard.

10.2 Resistors

We use 220 , 1k, 4.7k, 10k, 20k, and 22 kΩ resistors in this book. All are 0.25 W. The easiest way to get all
these, and many more, is to order SparkFun’s Resistor Kit. It’s a great way to be ready for future projects,
because it has 500 resistors.

If you don’t need an entire kit of resistors, you can order a la carte from a number of places. DigiKey has more
than a quarter million through-hole resistors at good prices, but make sure you are ordering the right one.

You can find the 10 kΩ trimpot (or variable resistor) at SparkFun 10k POT or Adafruit 10k POT.

Flex resistors (sometimes called flex sensors or bend sensors) are available at SparkFun flex resistors and
Adafruit flex resistors.

10.3 Transistors and Diodes

The 2N3904 is a common NPN transistor that you can get almost anywhere. Even Amazon NPN transitor has
it. Adafruit NPN transitor has a nice 10-pack. SparkFun NPN transitor lets you buy them one at a time. DigiKey
NPN transitor will gladly sell you 100,000.

The 1N4001 is a popular 1A diode. Buy one at SparkFun diode, 10 at Adafruit diode, or 10,000 at DigiKey diode.

10.4 Integrated Circuits

The PCA9306 is a small integrated circuit (IC) that converts voltage levels between 3.3 V and 5 V. You can get it
cheaply in large quantities from DigiKey PCA9306, but it’s in a very small, hard-to-use, surface-mount package.
Instead, you can get it from SparkFun PCA9306 on a Breakout board, which plugs into a breadboard.

The L293D is an H-bridge IC with which you can control large loads (such asmotors) in both directions. SparkFun
L293D, Adafruit L293D, and DigiKey L293D all have it in a DIP package that easily plugs into a breadboard.

The ULN2003 is a 7 darlington NPN transistor IC array used to drive motors one way. You can get it from DigiKey
ULN2003. A possible substitution is ULN2803 available from SparkFun ULN2003 and Adafruit ULN2003.

The TMP102 is an I2C-based digital temperature sensor. You can buy them in bulk from DigiKey TMP102, but it’s
too small for a breadboard. SparkFun TMP102 sells it on a breakout board that works well with a breadboard.

The DS18B20 is a one-wire digital temperature sensor that looks like a three-terminal transistor. Both SparkFun
DS18B20 and Adafruit DS18B20 carry it.

218 Chapter 10. Parts and Suppliers

http://www.amazon.com/s/ref=nb_sb_noss_1?url=search-alias%3Dtoys-and-games&field-keywords=breadboards&sprefix=breadboards%2Ctoys-and-games
http://www.amazon.com/s/ref=nb_sb_noss_1?url=search-alias%3Dtoys-and-games&field-keywords=breadboards&sprefix=breadboards%2Ctoys-and-games
https://www.digikey.com/en/products/filter/solderless-breadboards/638
https://www.sparkfun.com/search/results?term=breadboard
https://elinux.org/BeagleBoneBreadboard
https://www.adafruit.com/product/1609
http://bit.ly/1EXREh8
http://bit.ly/1C6WQjZ
http://bit.ly/18ACvpm
http://bit.ly/1NKg1Tv
http://bit.ly/1Br7HD2
http://bit.ly/1HCGoql
http://bit.ly/1B4J8H4
http://amzn.to/1AjvcsD
http://bit.ly/1b2dgxT
http://bit.ly/1GrZj5P
http://bit.ly/1GF8H9K
http://bit.ly/1GF8H9K
http://bit.ly/1EbRzF6
http://bit.ly/1Ajw54G
http://bit.ly/1Gs05zP
https://www.digikey.com/en/products/detail/mdd/1N4001/15517721
http://bit.ly/1Fb8REd
http://bit.ly/19ceTsd
http://bit.ly/1wujQqk
http://bit.ly/18bXChR
http://bit.ly/18bXChR
http://bit.ly/1xd43Yh
https://www.digikey.com/en/products/detail/stmicroelectronics/L293D/634700
https://www.digikey.com/en/products/detail/texas-instruments/ULN2003AN/277624
https://www.digikey.com/en/products/detail/texas-instruments/ULN2003AN/277624
http://bit.ly/1xd4oKy
http://bit.ly/1EXWhaU
https://www.digikey.com/en/products/filter/temperature-sensors/analog-and-digital-output/518?s=N4IgTCBcDaIC4FsAOBGADBAugXyA
http://bit.ly/1GFafAE
http://bit.ly/1Fba7Hv
http://bit.ly/1Fba7Hv
http://bit.ly/1EbSYvC

BeagleBone Cookbook

10.5 Opto-Electronics

LEDs are light-emitting diodes. LEDs come in a wide range of colors, brightnesses, and styles. You can get a
basic red LED at SparkFun red LED, Adafuit red LED, and DigiKey red LED.

Many places carry bicolor LED matrices, but be sure to get one with an I2C interface. Adafruit LED matrix is
where I got mine.

10.6 Capes

There are a number of sources for capes for BeagleBone Black. BeagleBoard.org capes page keeps a current
list.

10.7 Miscellaneous

Here are some things that don’t fit in the other categories.

Table 10.5: Miscellaneous

3.3 V FTDI cable SparkFun FTDI cable, Adafruit FTDI cable
USB WiFi adapter Adafruit WiFi adapter
HDMI cable SparkFun HDMI cable
Micro HDMI to HDMI cable Adafruit HDMI to microHDMI cable
HDMI to DVI Cable SparkFun HDMI to DVI cable
HDMI monitor Amazon HDMI monitor
Powered USB hub Amazon power USB hub, Adafruit power USB hub
Soldering iron SparkFun soldering iron, Adafruit soldering iron
Oscilloscope Adafruit oscilloscope
Multimeter SparkFun multimeter, Adafruit multimeter
PowerSwitch Tail II SparkFun PowerSwitch Tail II, Adafruit PowerSwitch Tail II
Servo motor SparkFun servo motor, Adafruit servo motor
5 V power supply SparkFun 5V power supply, Adafruit 5V power supply
3 V to 5 V motor SparkFun 3V-5V motor, Adafruit 3V-5V motor
3 V to 5 V bipolar stepper motor SparkFun 3V-5V bipolar stepper motor, Adafruit 3V-5V bipolar stepper motor
3 V to 5 V unipolar stepper motor Adafruit 3V-5V unipolar stepper motor
Pushbutton switch SparkFun pushbutton switch, Adafruit pushbutton switch
Magnetic reed switch SparkFun magnetic reed switch
LV-MaxSonar-EZ1 Sonar Range Finder SparkFun LV-MaxSonar-EZ1, Amazon LV-MaxSonar-EZ1
HC-SR04 Ultrsonic Range Sensor Amazon HC-SR04
Rotary encoder SparkFun rotary encoder, Adafruit rotary encoder
GPS receiver SparkFun GPS, Adafruit GPS
BLE USB dongle Adafruit BLE USB dongle
Syba SD-CM-UAUD USB Stereo Audio Adapter Amazon USB audio adapter
Sabrent External Sound Box USB-SBCV Amazon USB audio adapter (alt)
Vantec USB External 7.1 Channel Audio Adapter Amazon USB audio adapter (alt2)

10.5. Opto-Electronics 219

http://bit.ly/1BwZvQj
http://bit.ly/1GFaHPi
http://bit.ly/1GFaH1M
http://bit.ly/1b2f2PD
http://bit.ly/18AENVn
http://docs.beagleboard.org/
http://bit.ly/1FMeXsG
http://bit.ly/18AF1Mm
http://www.adafruit.com/products/814
https://www.sparkfun.com/products/11572
http://www.adafruit.com/products/1322
https://www.sparkfun.com/products/12612
http://amzn.to/1B4MABD
http://amzn.to/1NKm2zB
http://www.adafruit.com/products/961
http://bit.ly/1FMfUkP
http://bit.ly/1EXZ6J1
https://www.adafruit.com/products/468
http://bit.ly/1C5BUbu
http://bit.ly/1wXX3np
http://bit.ly/1Ag5bLP
http://bit.ly/1wXX8aF
http://bit.ly/1C72cvw
http://bit.ly/1HCPQdl
http://bit.ly/1C72q5C
http://bit.ly/18c0n2D
http://bit.ly/1b2g65Y
http://bit.ly/1C72DWF
http://bit.ly/1Bx2hVU
http://bit.ly/18c0HhV
http://www.adafruit.com/products/858
http://bit.ly/1AjDf90
http://bit.ly/1b2glhw
https://www.sparkfun.com/products/8642
http://bit.ly/1C73dDH
http://amzn.to/1wXXvlP
http://amzn.to/1FbcPNa
http://bit.ly/1D5ZypK
http://bit.ly/1D5ZGp3
http://bit.ly/1EA2sn0
http://bit.ly/1MrS2VV
http://www.adafruit.com/products/1327
http://amzn.to/1EA2GdI
http://amzn.to/1C74kTU
http://amzn.to/19cinev

BeagleBone Cookbook

220 Chapter 10. Parts and Suppliers

Chapter 11

Misc

Here are bits and pieces of ideas that are being developed.

11.1 BeagleConnect Freedom

Here are some notes on how to setup and use the Connect.

First get the flasher image from: https://www.beagleboard.org/distros/
beagleplay-home-assistant-webinar-demo-image

Flash the eMMC (which also loads the cc1352 with the correct firmware)

Here’s Jason’s demo at the 2023 EOSS: https://youtu.be/ZT9GEs3_ZYU?t=2195

Fig. 11.1: beagleconnect-start-gateway

bone$ sudo beagleconnect-start-gateway
setting up wpanusb gateway for IEEE 802154 CHANNEL 1(906 Mhz)
RTNETLINK answers: File exists
RTNETLINK answers: Device or resource busy
PING 2001:db8::1(2001:db8::1) from fe80::212:4b00:29b9:9884%lowpan0 lowpan0:␣
↪→56 data bytes
64 bytes from 2001:db8::1: icmp_seq=1 ttl=64 time=70.0 ms
64 bytes from 2001:db8::1: icmp_seq=2 ttl=64 time=66.6 ms
64 bytes from 2001:db8::1: icmp_seq=3 ttl=64 time=37.6 ms

(continues on next page)

221

https://www.beagleboard.org/distros/beagleplay-home-assistant-webinar-demo-image
https://www.beagleboard.org/distros/beagleplay-home-assistant-webinar-demo-image
https://youtu.be/ZT9GEs3_ZYU?t=2195

BeagleBone Cookbook

(continued from previous page)

64 bytes from 2001:db8::1: icmp_seq=4 ttl=64 time=37.6 ms
64 bytes from 2001:db8::1: icmp_seq=5 ttl=64 time=37.6 ms

--- 2001:db8::1 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4005ms
rtt min/avg/max/mdev = 37.559/49.868/70.035/15.084 ms

11.1.1 Useful Links

https://docs.micropython.org/en/latest/zephyr/quickref.html

https://docs.zephyrproject.org/latest/boards/arm/beagle_bcf/doc/index.html

11.1.2 micropython Examples

Here is the output from running the examples from here: beagleconnect-freedom-using-micropython

Plug the BeagleConnect Freedom into the USB on the Play.

bone:~$ sudo systemd-resolve --set-mdns=yes --interface=lowpan0
bone:~$ avahi-browse -r -t _zephyr._tcp
+ lowpan0 IPv6 zephyr _zephyr._tcp ␣
↪→ local
= lowpan0 IPv6 zephyr _zephyr._tcp ␣
↪→ local
hostname = [zephyr.local]
address = [2001:db8::1]
port = [12345]
txt = []
bone:~$ avahi-resolve -6 -n zephyr.local
zephyr.local 2001:db8::1
bone:~$ mcumgr conn add bcf0 type=”udp” connstring=”[2001:db8::1%lowpan0]:1337
↪→”
Connection profile bcf0 successfully added
bone:~$ mcumgr -c bcf0 image list
Images:
image=0 slot=0

version: hu.hu.hu
bootable: true
flags: active confirmed
hash: 16a97391d2570eae80667cfd8c475cb051d4a4a600430b64cb52b59f5db4ce22

Split status: N/A (0)
bone:~$ mcumgr -c bcf0 shell exec ”device list”
status=0

devices:
- GPIO_0 (READY)
- random@40028000 (READY)
- UART_1 (READY)
- UART_0 (READY)
- i2c@40002000 (READY)
- I2C_0S (READY)
requires: GPIO_0
requires: i2c@40002000
- flash-controller@40030000 (READY)
- spi@40000000 (READY)
requires: GPIO_0
- ieee802154g (READY)
- gd25q16c@0 (READY)

(continues on next page)

222 Chapter 11. Misc

https://docs.micropython.org/en/latest/zephyr/quickref.html
https://docs.zephyrproject.org/latest/boards/arm/beagle_bcf/doc/index.html

BeagleBone Cookbook

(continued from previous page)

requires: spi@40000000
- leds (READY)
- HDC2010-HUMIDITY (READY)
requires: I2C_0S
-
bone:~$ mcumgr -c bcf0 shell exec ”net iface”
status=0

Hostname: zephyr

Interface 0x20002de4 (IEEE 802.15.4) [1]
==
Link addr : 3D:9A:B9:29:00:4B:12:00
MTU : 125
Flags : AUTO_START,IPv6
IPv6 unicast addresses (max 3):

fe80::3f9a:b929:4b:1200 autoconf preferred infinite
2001:db8::1 manual preferred infinite

IPv6 multicast addresses (max 4):
ff02::1
ff02::1:ff4b:1200
ff02::1:ff00:1

bone:~$ tio /dev/ttyACM0

Press the RST button on the Connect.

I: gd25q16c@0: SFDP v 1.6 AP ff with 2 PH
I: PH0: ff00 rev 1.6: 16 DW @ 30
I: gd25q16c@0: 2 MiBy flash
I: PH1: ffc8 rev 1.0: 3 DW @ 90
*** Booting Zephyr OS build zephyr-v3.2.0-3470-g14e193081b1f ***
I: Starting bootloader
I: Primary image: magic=unset, swap_type=0x1, copy_done=0x3, image_ok=0x3
I: Scratch: magic=unset, swap_type=0x1, copy_done=0x3, image_ok=0x3
I: Boot source: primary slot
I: Swap type: none
I: Bootloader chainload address offset: 0x20000
I: Jumping to the first image slot

[00:00:00.001,464] <inf> spi_nor: gd25q16c@0: SFDP v 1.6 AP ff with 2 PH
[00:00:00.001,464] <inf> spi_nor: PH0: ff00 rev 1.6: 16 DW @ 30
[00:00:00.001,983] <inf> spi_nor: gd25q16c@0: 2 MiBy flash
[00:00:00.002,014] <inf> spi_nor: PH1: ffc8 rev 1.0: 3 DW @ 90
uart:~$ build time: Feb 22 2023 08:09:25MicroPython v1.19.1 on 2023-02-22;␣
↪→zephyr-beagleconnect_freedom with unknown-cpu
Type ”help()” for more information.
>>>

11.2 Setting up shortcuts to make life easier

We’ll be ssh’ing from the host to the bone often, here are some shortcuts I use so instead of typing ssh de-
bian@192.168.7.2 and a password every time. I can enter ssh bone and no password.

First edit /etc/hosts and add a couple of lines.

host$ sudo nano /etc/hosts

You may use whatever editor you want. I suggest nano since it’s easy to figure out. Add the following to the

11.2. Setting up shortcuts to make life easier 223

mailto:debian@192.168.7.2
mailto:debian@192.168.7.2

BeagleBone Cookbook

end of /etc/hosts and quit the editor.

192.168.7.2 bone

Now you can connect with

host$ ssh debian@bone

Let’s make it so you don’t have to enter debian. On your host computer, put the following in ~/.ssh/
config (Note: ~ is a shortcut for your home directory.)

Host bone
User debian
UserKnownHostsFile /dev/null
StrictHostKeyChecking no

These say that whenever you login to bone, login as debian. Now you can enter.

host$ ssh bone

One last thing, let’s make it so you don’t have to add a password. Back to your host.

host$ ssh-keygen

Accept all the defaults and then

host$ ssh-copy-id bone

Now all you have to enter is

host$ ssh bone

and no password is required. If you, especially virtual machine users, get an error says “sign_and_send_pubkey:
signing failed: agent refused operation”, you can solve this by entering

host$ ssh-add

which adds the private key identities to the authentication agent. Then you should be able to ssh bone without
problems.

11.3 Setting up a root login

By default the imagewe are running doesn’t allow a root login. You can always sudo from debian, but sometimes
it’s nice to login as root. Here’s how to setup root so you can login from your host without a password.

host$ ssh bone

bone$ sudo -i

root@bone# nano /etc/ssh/sshd_config

Search for the line

#PermitRootLogin prohibit-password

and change it to

PermitRootLogin yes

(The # symbol indicates a comment and must be removed in order for the setting to take effect.)

Save the file and quit the editor. Restart ssh so it will reread the file.

root@bone# systemctl restart sshd

And assign a password to root.

224 Chapter 11. Misc

mailto:debian@bone

BeagleBone Cookbook

root@bone# passwd

Now open another window on your host computer and enter:

host$ ssh-copy-id root@bone

and enter the root password. Test it with:

host$ ssh root@bone

You should be connected without a password. Now go back to the Bone and turn off the root password access.

root@bone# nano /etc/ssh/sshd_config

Restore the line:

#PermitRootLogin prohibit-password

and restart sshd.

root@bone# systemctl restart sshd
root@bone# exit
bone$ exit

You should now be able to go back to your host computer and login as root on the bone without a password.

host$ ssh root@bone

You have access to your bone without passwords only from you host computer. Try it from another computer
and see what happens

11.4 Wireshark

Wireshark is a network protocol analyzer that can be run on the Beagle or the host computer to see what’s
happening on the network.

11.4.1 Running Wireshark on the Beagle

If you have X11 installed on the Beagle and you are running Linux on your host you can run Wireshark on the
Beagle and have it display on the host.

Tip: A quick way to see if you have X windows installed is to ssh to your Beagle. At the prompt enter xfce
then enter <TAB><TAB>. If you see a list of completions, you have X installed.

1. First ssh to the Beagle using the -X flag.

host$ ssh -X debian@10.0.5.10

bone$ sudo apt update
bone$ sudo apt install wireshark
bone$ sudo usermod -a -G wireshark debian
bone$ exit

host$ ssh -X debian@10.0.5.10
host$ wireshark

11.4. Wireshark 225

https://wireshark.org

BeagleBone Cookbook

The -X flag sets the DISPLAY variable on the Beagle so it knows where to display the Beagle’s graphical data
on the host. We then install wireshark and add debian to the wireshark group. We then log out and log back in
again to be sure we are in the wireshark group. Finally we start wireshark.

You should see something like Wireshark start screen.

Fig. 11.2: Wireshark start screen

11.4.2 Running Wireshark on the host

If you don’t have X11 installed on the Beagle, you can run wireshark on your host computer and cap-
ture the packets on the Beagle. These instructions come from: https://serverfault.com/questions/362529/
how-can-i-sniff-the-traffic-of-remote-machine-with-wireshark

First login to the Beagle and install tcpdump. Use your Beagle’s IP address.

host$ ssh 192.168.7.2
bone$ sudo apt update
bone$ sudo apt install tcpdump
bone$ exit

Next, create a named pipe and have wireshark read from it.

host$ mkfifo /tmp/remote
host$ wireshark -k -i /tmp/remote

226 Chapter 11. Misc

https://serverfault.com/questions/362529/how-can-i-sniff-the-traffic-of-remote-machine-with-wireshark
https://serverfault.com/questions/362529/how-can-i-sniff-the-traffic-of-remote-machine-with-wireshark

BeagleBone Cookbook

Then, run tcpdump over ssh on your remote machine and redirect the packets to the named pipe:

host$ ssh root@192.168.7.2 ”tcpdump -s 0 -U -n -w - -i any not port 22” > /
↪→tmp/remote

Tip: For this to work you will need to follow in instructions in Setting up a root login.

11.4.3 Sharking the wpan radio

Now that you have Wireshark set up, you can view traffice from the Play’s wpan radio. First, set up the network
by running:

bone:~$ beagleconnect-start-gateway

Go to Wireshark and in the field that says Apply a display filter… enter, wpan || 6lowpan || ipv6.
This will dispaly three types of packets. Be sure to hit Enter.

Now generate some traffic:

bone:~$ ping6 -I lowpan0 2001:db8::1 -c 5 -p ca11ab1ebeef

Fig. 11.3: Wireshark ping6 -I lowpan0 2001:db8::1 -c 5 -p ca11ab1ebeef

You can see the pattern ca11ab1ebeef appears in the packets.

11.5 Find what UU is in i2cdetect

11.5. Find what UU is in i2cdetect 227

BeagleBone Cookbook

11.5.1 Problem

You run i2cdetect and want to know what the UU’s are.

bone:~$ i2cdetect -y -r 2
0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: UU -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: 40 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: UU -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- UU -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

11.5.2 Solution

Running man i2cdetect shows that:

“UU”. Probing was skipped, because this address is currently in use by a driver. This strongly
suggests that there is a chip at this address.

You can quickly see what the drivers are by looking at /sys/bus/i2c/devices

bone:~$ cd /sys/bus/i2c/devices
bone:~$ ls
2-0030 2-0050 2-0068 4-004c i2c-1 i2c-2 i2c-3 i2c-4 i2c-5

Here on the BeagleY-AI we see there are 5 i2c buses (i2c-1, i2c-2, i2c-3, i2c-4 and i2c-5). There
are three devices on bus 2 (2-0030, 2-0050 and 2-0068) and one device on bus 4 (4-004c). The first
digit is the bus number and the last digits are the address on the bus in hex. You can see what these devices
are by running:

bone:~$ cat */name
tps65219
24c32
ds1340
it66122
OMAP I2C adapter
OMAP I2C adapter
OMAP I2C adapter
OMAP I2C adapter
OMAP I2C adapter

You can the Google the names to see what they are. For example, the 24c32 is a 32K EEPROM by Microchip.

11.6 Converting a tmp117 to a tmp114

11.6.1 Problem

You have a tmp114 temperature sensor and you need a driver for it.

11.6.2 Solution

Find a similar driver and convert it to the tmp114.

Let’s first see if there is a driver for it already. Run the following on the bone using the tab key in place of
<tab>.

228 Chapter 11. Misc

BeagleBone Cookbook

bone$ modinfo tmp<tab><tab>
tmp006 tmp007 tmp102 tmp103 tmp108 tmp401 tmp421 tmp513
bone$ modinfo tmp

Here you see a list of modules that match tmp, unfortunately tmp114 is not there. Let’s see if there are any
matches in /lib/modules.

bone$ find /lib/modules/ -iname ”*tmp*”
/lib/modules/5.10.168-ti-arm64-r104/kernel/drivers/iio/temperature/tmp006.ko.
↪→xz
/lib/modules/5.10.168-ti-arm64-r104/kernel/drivers/iio/temperature/tmp007.ko.
↪→xz
/lib/modules/5.10.168-ti-arm64-r104/kernel/drivers/hwmon/tmp103.ko.xz
/lib/modules/5.10.168-ti-arm64-r104/kernel/drivers/hwmon/tmp421.ko.xz
/lib/modules/5.10.168-ti-arm64-r104/kernel/drivers/hwmon/tmp108.ko.xz
/lib/modules/5.10.168-ti-arm64-r104/kernel/drivers/hwmon/tmp513.ko.xz
/lib/modules/5.10.168-ti-arm64-r104/kernel/drivers/hwmon/tmp401.ko.xz
/lib/modules/5.10.168-ti-arm64-r104/kernel/drivers/hwmon/tmp102.ko.xz

Looks like the same list, but here we can see what type of driver it is, either hwmon or iio. hwmon is an older
harware monitor. iio is the newer, and prefered, Industrial IO driver. Googling tmp006 and tmp007 shows that
they are Infrared Thermopile Sensors, not the same at the tmp114. (Google it). Let’s keep looking for a more
compatible device.

Browse over to http://kernel.org to see if there are tmp114 drivers in the newer versions of the kernel. The first
line in the table is mainline. Click on the browse link on the right.

Here you will see the top level of the Linux sourse tree for the mainline version of the kernel.

Click on drivers and then iio. Finally, since tmp114 is a temperture sensor, click on temperature.

Here you see all the source code for the iio temperature drivers for the mainline version of the kernel. We’ve
seen tmp006 and tmp007 as before, tmp117 is new. Maybe it will work. Click on tmp117.c to see the code.
Looks like it also works for the tmp116 too.

Let’s try convering it to work with the tmp114.

A quick way to copy the code to the bone is to right-click on the plain link and select Copy link address. Then,
on the bone enter wget and paste the link. Mine looks like the following, yours will be similar.

bone$ wget https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
↪→git/plain/drivers/iio/temperature/tmp117.c?h=v6.4-rc7
bone$ mv 'tmp117.c?h=v6.4-rc7' tmp117.c
bone$ cp tmp117.c tmp114.c

The mv command moves the downloaded file to a usable name and the cp copies to a new file with the new
name.

Compiling the module

Next we need to compile the driver. To do this we need to load the corresponding header files for the version
of the kernel that’s beening run.

bone$ uname -r
5.10.168-ti-arm64-r105

Here you see which version I’m running, yours will be similar. Now load the headers.

bone$ sudo apt install linux-headers-`uname -r`

Next create a Makefile. Put the following in a file called Makefile.

11.6. Converting a tmp117 to a tmp114 229

https://docs.kernel.org/hwmon/hwmon-kernel-api.html
https://www.kernel.org/doc/html/v4.12/driver-api/iio/index.html
http://kernel.org

BeagleBone Cookbook

Fig. 11.4: The Linux Kernel Archives, kernel.org

230 Chapter 11. Misc

BeagleBone Cookbook

Fig. 11.5: The Linux Kernel Archives, drivers

11.6. Converting a tmp117 to a tmp114 231

BeagleBone Cookbook

Fig. 11.6: The Linux Kernel Archives, tmp117 driver

232 Chapter 11. Misc

BeagleBone Cookbook

Fig. 11.7: The Linux Kernel Archives, plain button

11.6. Converting a tmp117 to a tmp114 233

BeagleBone Cookbook

Listing 11.1: Makefile for compiling module (Makefile)

1 obj-m += tmp114.o
2

3 KDIR ?= /lib/modules/$(shell uname -r)/build
4 PWD := $(CURDIR)
5

6 all:
7 make -C $(KDIR) M=$(PWD) modules
8

9 clean:
10 make -C $(KDIR) M=$(PWD) cleanobj-m += tmp114.o
11

12 KDIR ?= /lib/modules/$(shell uname -r)/build
13 PWD := $(CURDIR)
14

15 all:
16 make -C $(KDIR) M=$(PWD) modules
17

18 clean:
19 make -C $(KDIR) M=$(PWD) clean

Makefile

Now you are ready to compile:

bone$ make
make -C /lib/modules/5.10.168-ti-arm64-r105/build M=/home/debian/play modules
make[1]: Entering directory '/usr/src/linux-headers-5.10.168-ti-arm64-r105'
CC [M] /home/debian/play/tmp114.o
/home/debian/play/tmp114.c: In function ‘tmp117_identify’:
/home/debian/play/tmp114.c:150:7: error: implicit declaration of function␣
↪→‘i2c_client_get_device_id’; did you mean ‘i2c_get_device_id’? [-
↪→Werror=implicit-function-declaration]
150 | id = i2c_client_get_device_id(client);

| ^~~~~~~~~~~~~~~~~~~~~~~~
| i2c_get_device_id

/home/debian/play/tmp114.c:150:5: warning: assignment to ‘const struct i2c_
↪→device_id *’ from ‘int’ makes pointer from integer without a cast [-Wint-
↪→conversion]
150 | id = i2c_client_get_device_id(client);

| ^
cc1: some warnings being treated as errors
make[2]: *** [scripts/Makefile.build:286: /home/debian/play/tmp114.o] Error 1
make[1]: *** [Makefile:1822: /home/debian/play] Error 2
make[1]: Leaving directory '/usr/src/linux-headers-5.10.168-ti-arm64-r105'
make: *** [Makefile:7: all] Error 2

Well, the good news is, it is compiling, that means it found the correct headers. But now the work begins
converting to the tmp114.

Converting to the tmp114

You are mostly on your own for this part, but here are some suggestions:

• First get it to compile without errors. In this case, the function at line 150 isn’t defined. Try commenting
it out and recompiling.

• Once it’s compiling without errors, try running it. First open another window and login to beagle. Then
run:

234 Chapter 11. Misc

BeagleBone Cookbook

bone$ dmesg -Hw

This will display the kernel messages. The -H put them in human readable form, and the -w waits for more
messages.

• Next, “insert” it in the running kernel:

bone$ sudo insmod tmp114.ko

If all worked you shouldn’t see any messages, either after the command or in the dmesg window. If you want
to insert the module again, you will have to remove it first. Remove with:

bone$ sudo rmmod tmp114

Now we need to tell the kernel we have an I2C device and which bus and which address.

Finding your I2C device

Each I2C device appears at a certain address on a given bus. My device is on bus 3, so I run:

bone$ i2cdetect -y -r 3
0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- 4d -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

This shows there is a device at address 0x4d. If you don’t know your bus number, just try a few until you find
it.

The temperature is in register 0 for my device and it’s 16 bits (one word), it is read with:

bone$ i2cget -y 3 0x4d 0 w
0xb510

The tmp114 swaps the two bytes, so the real temperature is 0x10b5, or so. You need to look up the datawsheet
to learn how to comvert it.

Registers and IDs

Each I2C device has a number of internal registers that interact with the device. The tmp114 uses different
register numbers than the tmp117, so you need to change these values. To do this, Google for the data sheets
for each and look them up. I found them at: https://www.ti.com/lit/gpn/tmp114 and https://www.ti.com/lit/gpn/
tmp117.

Creating a new device

Once you’ve converted the module for the tmp114 and inserted it, you can now create a new device.

bone$ cd /sys/class/i2c-adapter/i2c-3
bone$ sudo chgrp gpio *
bone$ sudo chmod g+w *
bone$ ls -ls
total 0
0 --w--w---- 1 root gpio 4096 Jun 22 18:24 delete_device

(continues on next page)

11.6. Converting a tmp117 to a tmp114 235

https://www.ti.com/lit/gpn/tmp114
https://www.ti.com/lit/gpn/tmp117
https://www.ti.com/lit/gpn/tmp117

BeagleBone Cookbook

(continued from previous page)

0 lrwxrwxrwx 1 root root 0 Jan 1 1970 device -> ../../20030000.i2c
0 drwxrwxr-x 3 root gpio 0 Jun 22 18:20 i2c-dev
0 -r--rw-r-- 1 root gpio 4096 Jun 22 18:20 name
0 --w--w---- 1 root gpio 4096 Jun 22 18:20 new_device
0 lrwxrwxrwx 1 root root 0 Jan 1 1970 of_node -> ../../../../../
↪→firmware/devicetree/base/bus@f0000/i2c@20030000
0 drwxrwxr-x 2 root gpio 0 Jun 22 18:20 power
0 lrwxrwxrwx 1 root root 0 Jan 1 1970 subsystem -> ../../../../../bus/
↪→i2c
0 -rw-rw-r-- 1 root gpio 4096 Jun 22 18:20 uevent

The first line changes to the directory to where we can create the new device. The final 3 in the path is for bus
3, your milage may vary. We then change the group to gpio and give it write permission. You only need to do
this once.

Now make a new device.

bone$ echo tmp114 0x4d > new_device

Look in the demsg window and you should see:

[Jun22 19:24] tmp114 3-004d: tmp114_identify id (0x1114)
[+0.000027] tmp114 3-004d: tmp114_probe id (0x1114)
[+0.000502] i2c i2c-3: new_device: Instantiated device tmp114 at 0x4d

It’s been found! Let’s see what it knows about it.

bone$ iio_info
Library version: 0.24 (git tag: v0.24)
...

iio:device1: tmp114
1 channels found:

temp: (input)
2 channel-specific attributes found:

attr 0: raw value: 4257
attr 1: scale value: 7.812500

No trigger on this device

I’ve left out some of the lines, at the bottom you see the tmp114, and two values (raw and scale) that were
read from it. Let’s read them ourselves. Do an ls and you’ll see a new directory, 3-004d. This is address 0x4d
on bus 3, just what we wanted.

bone$ cd 3-004d/iio:device1
bone$ ls
dev in_temp_raw in_temp_scale name power subsystem uevent
bone$ cat in_temp_raw
4275

You’ll have to look in the datasheet to learn how to convert the temperature.

If you try to run i2cget again, you’ll get an error:

bone$ i2cget -y 3 0x4d 0 w
Error: Could not set address to 0x4d: Device or resource busy

This is because the module is using it. Delete the device and you’ll have access again.

bone$ echo 0x4d > /sys/class/i2c-adapter/i2c-3/delete_device
bone$ i2cget -y 3 0x4d 0 w
0x8e10

You should also see a message in dmesg.

236 Chapter 11. Misc

BeagleBone Cookbook

11.7 Documenting with Sphinx

11.7.1 Problem

You want to add or update the Beagle documentation.

11.7.2 Solution

BeagleBoard.org uses the Sphinx Python Documentation Generator and the rst markup language.

Here’s what you need to do to fork the repository and render a local copy of the documentation. Browse to http:
//docs-beagleboard-io-bradybeagle-7f06fb4466371884e68566ba99482ee.beagleboard.io/latest and click on
the Edit on GitLab button on the upper-right of the page. Clone the repository.

bash$ git clone git@git.beagleboard.org:docs/docs.beagleboard.io.git
bash$ cd docs.beagleboard.io

Then run the following to load the code submodule

bash$ git submodule update --init

Set up the environment for Sphinx.

bash$ python -m venv .venv
bash$ source .venv/bin/activate
bash$ pip install -r ./requirements.txt
bash$ make livehtml

This starts a local web server that you can point your browser to to see the formatted text.

Now, sync changes with upstream:

bone$ git remote add upstream https://git.beagleboard.org/docs/docs.
↪→beagleboard.io.git
bone$ git fetch upstream
bone$ git pull upstream main

Downloading Sphinx

Run the following to download Sphinx. Note: This will take a while, it loads some 6G bytes.

bone$ sudo apt update
bone$ sudo apt upgrade
bone$ sudo apt install -y \

make git wget \
doxygen graphviz librsvg2-bin\
texlive-latex-base texlive-latex-extra latexmk texlive-fonts-recommended␣

↪→\
python3 python3-pip \
python3-sphinx python3-sphinx-rtd-theme python3-sphinxcontrib.

↪→svg2pdfconverter \
python3-pil \
imagemagick-6.q16 librsvg2-bin webp \
texlive-full texlive-latex-extra texlive-fonts-extra \
fonts-freefont-otf fonts-dejavu fonts-dejavu-extra fonts-freefont-ttf

bone$ python3 -m pip install --upgrade pip
bone$ pip install -U sphinx_design
bone$ pip install -U sphinxcontrib-images
bone$ pip install -U sphinx-serve

11.7. Documenting with Sphinx 237

https://www.sphinx-doc.org/en/master/index.html
https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
http://docs-beagleboard-io-bradybeagle-7f06fb4466371884e68566ba99482ee.beagleboard.io/latest
http://docs-beagleboard-io-bradybeagle-7f06fb4466371884e68566ba99482ee.beagleboard.io/latest

BeagleBone Cookbook

These instructions came from lorforlinux on the Beagleboard Slack channel.

Now go to the cloned docs.beagleboard.io repository folder and do the following. To clean build directory:

bone$ cd docs.beagleboard.io
bone$ make clean

To generate HTML output of docs:

bone$ make html

To generate PDF output of docs:

bone$ make latexpdf

To preview docs on your local machine:

bone$ sphinx-serve

Then point your browser to localhost:8081.

Tip: You can keep the sphinx-serve running until you clean the build directory using make clean. Warnings
will be hidden after first run of make html or make latexpdf, to see all the warnings again just run make clean
before building HTML or PDF

Creating A New Book

• Create a new book folder here: https://git.beagleboard.org/docs/docs.beagleboard.io/-/tree/main/books

• Create rst files for all the chapters in there respective folders so that you can easily manage media
for that chapter as shown here: https://git.beagleboard.org/docs/docs.beagleboard.io/-/tree/main/books/
pru-cookbook

• Create an index.rst file in the book folder and add a table of content (toc) for all the chapters. For exam-
ple see this file: https://git.beagleboard.org/docs/docs.beagleboard.io/-/raw/main/books/pru-cookbook/
index.rst

• Add the bookname/index.rst reference in the main index file as well: https://git.beagleboard.org/docs/
docs.beagleboard.io/-/raw/main/books/index.rst

• At last you have to update the two files below to render the book in HTML and PDF version of the
docs respectively: https://git.beagleboard.org/docs/docs.beagleboard.io/-/raw/main/index.rst https://git.
beagleboard.org/docs/docs.beagleboard.io/-/raw/main/index-tex.rst

11.8 Running Sparkfun’s qwiic Python Examples

Many of the Sparkfun qwiic devices have Python examples showing how to use them. Unfortunately the exam-
ples assume I2C bus 1 is used, but the qwiic bus on the Play is bus 5. Here is a quick hack to get the Sparkfun
Python examples to use bus 5. I’ll show it for the Joystick, but it should work for the others as well.

First, browse to Sparkfun’s qwiic Joystick page, https://www.sparkfun.com/products/15168 and click on the
DOCUMENTS tab and then on Python Package. Follow the pip instillation instructions (sudo pip install
sparkfun-qwiic-joystick)

Next, uninstall the current qwiic I2C package.

bone$ sudo pip uninstall sparkfun-qwiic-i2c

Then clone the Qwiic I2C repo:

238 Chapter 11. Misc

https://beagleboard.slack.com/archives/C8S7EKZC2/p1684940872699269
https://git.beagleboard.org/docs/docs.beagleboard.io/-/tree/main/books
https://git.beagleboard.org/docs/docs.beagleboard.io/-/tree/main/books/pru-cookbook
https://git.beagleboard.org/docs/docs.beagleboard.io/-/tree/main/books/pru-cookbook
https://git.beagleboard.org/docs/docs.beagleboard.io/-/raw/main/books/pru-cookbook/index.rst
https://git.beagleboard.org/docs/docs.beagleboard.io/-/raw/main/books/pru-cookbook/index.rst
https://git.beagleboard.org/docs/docs.beagleboard.io/-/raw/main/books/index.rst
https://git.beagleboard.org/docs/docs.beagleboard.io/-/raw/main/books/index.rst
https://git.beagleboard.org/docs/docs.beagleboard.io/-/raw/main/index.rst
https://git.beagleboard.org/docs/docs.beagleboard.io/-/raw/main/index-tex.rst
https://git.beagleboard.org/docs/docs.beagleboard.io/-/raw/main/index-tex.rst
https://www.sparkfun.com/products/15168

BeagleBone Cookbook

bone$ git clone git@github.com:sparkfun/Qwiic_I2C_Py.git
bone$ cd Qwiic_I2C_Py/qwiic_i2c

Edit linux_i2c.py and go to around line 62 and change it to:

iBus = 5

Next, cd up a level to the Qwiic_I2C_Py directory and reinstall

bone$ cd ..
bone$ sudo python setup.py install

Finally, run one of the Joystick examples. If it isn’t using bus 5, try reinstalling setup.py again.

11.8.1 Qwiic Alphanumeric display

Here’s the repo I used for this display. https://github.com/thess/qwiic_alphanumeric_py

11.9 Controlling LEDs by Using SYSFS Entries

11.9.1 Problem

You want to control the onboard LEDs from the command line.

11.9.2 Solution

On Linux, everything is a file that is, you can access all the inputs and outputs, the LEDs, and so on by opening
the right file and reading or writing to it. For example, try the following:

bone$ cd /sys/class/leds/
bone$ ls
beaglebone:green:usr0 beaglebone:green:usr2
beaglebone:green:usr1 beaglebone:green:usr3

What you are seeing are four directories, one for each onboard LED. Now try this:

bone$ cd beaglebone\:green\:usr0
bone$ ls
brightness device max_brightness power subsystem trigger uevent
bone$ cat trigger
none nand-disk mmc0 mmc1 timer oneshot [heartbeat]

backlight gpio cpu0 default-on transient

The first command changes into the directory for LED usr0, which is the LED closest to the edge of the board.
The [heartbeat] indicates that the default trigger (behavior) for the LED is to blink in the heartbeat pattern.
Look at your LED. Is it blinking in a heartbeat pattern?

Then try the following:

bone$ echo none > trigger
bone$ cat trigger
[none] nand-disk mmc0 mmc1 timer oneshot heartbeat

backlight gpio cpu0 default-on transient

This instructs the LED to use none for a trigger. Look again. It should be no longer blinking.

Now, try turning it on and off:

11.9. Controlling LEDs by Using SYSFS Entries 239

https://github.com/thess/qwiic_alphanumeric_py
http://bit.ly/1AjhWUW

BeagleBone Cookbook

bone$ echo 1 > brightness
bone$ echo 0 > brightness

The LED should be turning on and off with the commands.

11.10 Controlling GPIOs by Using SYSFS Entries

11.10.1 Problem

You want to control a GPIO pin from the command line.

11.10.2 Solution

Controlling LEDs by Using SYSFS Entries introduces the sysfs. This recipe shows how to read and write a GPIO
pin.

11.11 Reading a GPIO Pin via sysfs

Suppose that you want to read the state of the P9_42 GPIO pin. (Reading the Status of a Pushbutton or Magnetic
Switch (Passive On/Off Sensor) shows how to wire a switch to P9_42.) First, you need to map the P9 header
location to GPIO number using Mapping P9_42 header position to GPIO 7, which shows that P9_42 maps to
GPIO 7.

Fig. 11.8: Mapping P9_42 header position to GPIO 7

Next, change to the GPIO sysfs directory:

240 Chapter 11. Misc

BeagleBone Cookbook

bone$ cd /sys/class/gpio/
bone$ ls
export gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport

The ls command shows all the GPIO pins that have be exported. In this case, none have, so you see only the
four GPIO controllers. Export using the export command:

bone$ echo 7 > export
bone$ ls
export gpio7 gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport

Now you can see the gpio7 directory. Change into the gpio7 directory and look around:

bone$ cd gpio7
bone$ ls
active_low direction edge power subsystem uevent value
bone$ cat direction
in
bone$ cat value
0

Notice that the pin is already configured to be an input pin. (If it wasn’t already configured that way, use echo
in > direction to configure it.) You can also see that its current value is 0—that is, it isn’t pressed. Try pressing
and holding it and running again:

bone$ cat value
1

The 1 informs you that the switch is pressed. When you are done with GPIO 7, you can always unexport it:

bone$ cd ..
bone$ echo 7 > unexport
bone$ ls
export gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport

11.12 Writing a GPIO Pin via sysfs

Now, suppose that you want to control an external LED. Toggling an External LED shows how to wire an LED to
P9_14. Mapping P9_42 header position to GPIO 7 shows P9_14 is GPIO 50. Following the approach in Controlling
GPIOs by Using SYSFS Entries, enable GPIO 50 and make it an output:

bone$ cd /sys/class/gpio/
bone$ echo 50 > export
bone$ ls
gpio50 gpiochip0 gpiochip32 gpiochip64 gpiochip96
bone$ cd gpio50
bone$ ls
active_low direction edge power subsystem uevent value
bone$ cat direction
in

By default, P9_14 is set as an input. Switch it to an output and turn it on:

bone$ echo out > direction
bone$ echo 1 > value
bone$ echo 0 > value

The LED turns on when a 1 is written to value and turns off when a 0 is written.

11.12. Writing a GPIO Pin via sysfs 241

BeagleBone Cookbook

11.13 The Play’s Boot Sequence

The BeagleBoard Play is based on the Texas Instrument’s AM625 Sitara processor which supports many boot
modes.

Note: bootlin (https://bootlin.com/) has many great Linux training materials for free on their
site. Their embedded Linux workshop (https://bootlin.com/training/embedded-linux/) gives a detailed
presentation of the Play’s boot sequence (https://bootlin.com/doc/training/embedded-linux-beagleplay/
embedded-linux-beagleplay-labs.pdf, starting at page 9). Check it out for details on building the boot se-
quence from scratch.

Here we’ll take a high-level look at booting from both the user’s view and the developer’s view.

11.13.1 Booting for the User

The most common way for the Play to boot is the power up the board, if the micro SD card is present, it will
boot from it, if it isn’t present it will boot from the built in eMMC.

You can override the boot sequence by using the USR button (located near the micro SD cage). If the USR
button is pressed the Play will boot from the micro SD card.

Note: If the eMMC fails to boot, it will attempt to boot from the UART. If the SD card fails to boot, it will try
booting via the USB.

11.13.2 Booting for the Developer

Tip: These diagrams might help: https://github.com/u-boot/u-boot/blob/
6e8fa0611f19824e200fe4725f18bce7e2000071/doc/board/ti/k3.rst

If you are developing firmware for the Play you may need to have access to the processor early in the booting
sequence. Much can happen before the Linux kernel starts its boot process. Here are some notes on what the
BeagleBoard Play does when it boots up. Many of the booting details come from Chapter 5 (Initialization) of
the AM62x Technical Reference Manual (TRM) (https://www.ti.com/product/AM625, https://www.ti.com/lit/pdf/
spruiv7). The following figure, taken from page 2456, shows the Initialization Process.

Fig. 11.9: Initialization Process

We are interested in what happens in the ROM code. Page 2457, of the TRM, shows the different ROM Code
Boot Modes.

These are selected at boot time based on the state of the BOOTMODE pins. The table on page 2465 shows the
BOOTMODE pins.

Page 14 of of the Play’s schematic (https://git.beagleboard.org/beagleplay/beagleplay/-/blob/main/BeaglePlay_
sch.pdf) shows how the BOOTMODE pins are set during boot.

242 Chapter 11. Misc

https://bootlin.com/
https://bootlin.com/training/embedded-linux/
https://bootlin.com/doc/training/embedded-linux-beagleplay/embedded-linux-beagleplay-labs.pdf
https://bootlin.com/doc/training/embedded-linux-beagleplay/embedded-linux-beagleplay-labs.pdf
https://github.com/u-boot/u-boot/blob/6e8fa0611f19824e200fe4725f18bce7e2000071/doc/board/ti/k3.rst
https://github.com/u-boot/u-boot/blob/6e8fa0611f19824e200fe4725f18bce7e2000071/doc/board/ti/k3.rst
https://www.ti.com/product/AM625
https://www.ti.com/lit/pdf/spruiv7
https://www.ti.com/lit/pdf/spruiv7
https://git.beagleboard.org/beagleplay/beagleplay/-/blob/main/BeaglePlay_sch.pdf
https://git.beagleboard.org/beagleplay/beagleplay/-/blob/main/BeaglePlay_sch.pdf

BeagleBone Cookbook

Fig. 11.10: ROM Code Boot Modes

Fig. 11.11: BOOTMODE Pin Mapping

11.13. The Play’s Boot Sequence 243

BeagleBone Cookbook

Fig. 11.12: Bootstrap

Therefore the following modes are selected if Button Not-pressed

1, PLL Config B[2:0] = 0b011 : Ref Clcok -> 25MHz
2, Primary Boot B[9:3] = 0b1001001 : eMMC Boot
3, Backup Boot B[13:10] = 0b1011 : UART Boot

That is, you boot off the eMMC and if that fails you boot off the UART.

If Button is Pressed

1, PLL Config B[2:0] = 0b011 : Ref Clcok -> 25MHz
2, Primary Boot B[9:3] = 0b1001000 : SD Card FS Boot
3, Backup Boot B[13:10] = 0b0001 : USB DFU Boot

Here you are booting off the SD card (in filesystem mode), or the USB if that fails.

11.13.3 Boot Flow

There are many steps that occur after the BOOTMODE is selected and before the Linux Kernel boots. Boot
Flow shows those steps for the R5 processor and the arm (A53) processor. The key parts are tiboot3.bin and
tispl.bin runnng on the R5 and u-boot.img running on the A53. These binary files are found on the Play in
/boot/firmware.

Note: The files on the SD card and the eMMC are in ext4 format. The files used for booting must be in
vfat format. Therefore /boot/firmware is mounted in vfat as seen in /etc/fstab.

/etc/fstab: static file system information.
#
/dev/mmcblk0p2 / ext4 noatime,errors=remount-ro 0 1
/dev/mmcblk0p1 /boot/firmware vfat defaults 0 0
debugfs /sys/kernel/debug debugfs mode=755,uid=root,gid=gpio,defaults 0 ␣
↪→0

244 Chapter 11. Misc

https://github.com/u-boot/u-boot/blob/master/doc/board/ti/am62x_sk.rst#boot-flow
https://github.com/u-boot/u-boot/blob/master/doc/board/ti/am62x_sk.rst#boot-flow

BeagleBone Cookbook

11.13.4 Source Code

The source code and examples of how to compile the source is found in: https://git.beagleboard.org/
beagleboard/repos-arm64/-/blob/main/bb-u-boot-beagleplay/suite/bookworm/debian/rules#L29

11.14 Home Assistant

1. Get an image here:
https://www.beagleboard.org/distros/beagleplay-home-assistant-webinar-demo-image I chose the
boot from SD image.

2. Boot the Play from the SD card

3. Log into the Play

4. Find the Play’s IP address by running

bone$ ip a show eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state␣
↪→UP group default qlen 1000

link/ether 34:08:e1:85:1b:a6 brd ff:ff:ff:ff:ff:ff
inet 10.0.5.24/24 brd 10.0.5.255 scope global dynamic␣

↪→noprefixroute eth0

The address is after inet, in my case it’s 10.0.5.24.

5. Wait 5 or 10 minutes and then open a browser at 10.0.5.24:8123 using your IP address.

Tip: If you get a “This site can’t be reached” error message, try running journalctl -f to see the log
messages.

1. Open another browser and follow the instructions at:
https://www.home-assistant.io/getting-started/onboarding

11.14.1 mqtt

Here are Jason’s addons. https://git.beagleboard.org/jkridner/home-assistant-addons

11.14. Home Assistant 245

https://git.beagleboard.org/beagleboard/repos-arm64/-/blob/main/bb-u-boot-beagleplay/suite/bookworm/debian/rules#L29
https://git.beagleboard.org/beagleboard/repos-arm64/-/blob/main/bb-u-boot-beagleplay/suite/bookworm/debian/rules#L29
https://www.beagleboard.org/distros/beagleplay-home-assistant-webinar-demo-image
https://www.home-assistant.io/getting-started/onboarding
https://git.beagleboard.org/jkridner/home-assistant-addons

	Basics
	Picking Your Beagle
	Problem
	Solution

	Getting Started, Out of the Box
	Problem
	Solution
	Discussion

	Verifying You Have the Latest Version of the OS on Your Bone
	Problem
	Solution

	Running the Python Examples
	Problem
	Solution

	Cloning the Cookbook Repository
	Problem
	Solution

	Wiring a Breadboard
	Problem
	Solution
	Breadboard wired to BeagleBone Black

	Editing Code Using Visual Studio Code
	Problem
	Solution

	Running Python and JavaScript Applications from Visual Studio Code
	Problem
	Solution
	Finding the Latest Version of the OS for Your Bone
	Problem
	Solution

	Running the Latest Version of the OS on Your Bone
	Problem
	Solution

	Updating the OS on Your Bone
	Problem
	Solution
	Discussion

	Backing Up the Onboard Flash
	Problem
	Solution

	Updating the Onboard Flash
	Problem
	Solution

	Sensors
	Choosing a Method to Connect Your Sensor
	Problem
	Solution

	Input and Run a Python or JavaScript Application for Talking to Sensors
	Problem
	Solution

	Reading the Status of a Pushbutton or Magnetic Switch (Passive On/Off Sensor)
	Problem
	Solution

	Mapping Header Numbers to gpio Numbers
	Problem
	Solution

	Reading a Position, Light, or Force Sensor (Variable Resistance Sensor)
	Problem
	Solution
	A variable resistor with three terminals
	A variable resistor with two terminals

	Reading a Distance Sensor (Analog or Variable Voltage Sensor)
	Problem
	Solution

	Reading a Distance Sensor (Variable Pulse Width Sensor)
	Problem
	Solution

	Accurately Reading the Position of a Motor or Dial
	Problem
	Solution
	See Also

	Acquiring Data by Using a Smart Sensor over a Serial Connection
	Problem
	Solution

	Measuring a Temperature
	Problem
	Solution

	I2C tools
	Reading the temperature via the kernel driver
	Reading i2c device directly
	Reading Temperature via a Dallas 1-Wire Device
	Problem
	Solution

	Playing and Recording Audio
	Problem
	Solution

	Listing the ALSA audio output and input devices on the Bone
	Discussion

	Displays and Other Outputs
	Toggling an Onboard LED
	Problem
	Solution

	Toggling an External LED
	Problem
	Solution

	Toggling a High-Voltage External Device
	Problem
	Solution

	Fading an External LED
	Problem
	Solution

	Writing to an LED Matrix
	Problem
	Solution

	Using I2C command-line tools to discover the address of the display
	LED matrix display (matrixLEDi2c.py)
	Driving a 5 V Device
	Problem
	Solution

	Writing to a NeoPixel LED String Using the PRUs
	Problem
	Solution

	Writing to a NeoPixel LED String Using LEDscape
	Making Your Bone Speak
	Problem
	Solution

	Motors
	Controlling a Servo Motor
	Problem
	Solution

	Controlling a Servo with an Rotary Encoder
	Problem
	Solution

	Controlling the Speed of a DC Motor
	Problem
	Solution

	See Also
	Controlling the Speed and Direction of a DC Motor
	Problem
	Solution

	Driving a Bipolar Stepper Motor
	Problem
	Solution

	Driving a Unipolar Stepper Motor
	Problem
	Solution

	Beyond the Basics
	Running Your Bone Standalone
	Problem
	Solution

	Selecting an OS for Your Development Host Computer
	Problem
	Solution

	Getting to the Command Shell via SSH
	Problem
	Solution
	Default password

	Removing the Message of the Day
	Problem
	Solution

	Getting to the Command Shell via the Virtual Serial Port
	Problem
	Solution

	Viewing and Debugging the Kernel and u-boot Messages at Boot Time
	Problem
	Solution

	Verifying You Have the Latest Version of the OS on Your Bone from the Shell
	Problem
	Solution

	Controlling the Bone Remotely with a VNC
	Problem
	Solution

	Learning Typical GNU/Linux Commands
	Problem
	Solution

	Editing a Text File from the GNU/Linux Command Shell
	Problem
	Solution

	Establishing an Ethernet-Based Internet Connection
	Problem
	Solution

	Establishing a WiFi-Based Internet Connection
	Problem
	Solution

	Sharing the Host’s Internet Connection over USB
	Problem
	Solution
	Letting your bone see the world: setting up IP masquerading
	Letting the world see your bone: setting up port forwarding

	Setting Up a Firewall
	Problem
	Solution

	Installing Additional Packages from the Debian Package Feed
	Problem
	Solution

	Removing Packages Installed with apt
	Problem
	Solution

	Copying Files Between the Onboard Flash and the MicroSD Card
	Problem
	Solution

	Freeing Space on the Onboard Flash or MicroSD Card
	Problem
	Solution
	Removing preinstalled packages
	Discovering big files

	Using C to Interact with the Physical World
	Problem
	Solution

	Internet of Things
	Accessing Your Host Computer’s Files on the Bone
	Problem
	Solution

	Serving Web Pages from the Bone
	Problem
	Solution

	Interacting with the Bone via a Web Browser
	Problem
	Solution

	First Flask - hello, world
	Adding a template
	Displaying GPIO Status in a Web Browser - reading a button
	Problem
	Solution

	Controlling GPIOs
	Problem
	Solution

	Plotting Data
	Problem
	Solution
	Analog in - Continuous
	Analog in - Continuous, Change the sample rate

	Sending an Email
	Problem
	Solution

	Sending an SMS Message
	Problem
	Solution

	Displaying the Current Weather Conditions
	Problem
	Solution

	Sending and Receiving Tweets
	Problem
	Solution

	Creating a Project and App
	Creating a tweet
	Deleting a tweet
	Wiring the IoT with Node-RED
	Problem
	Solution

	Starting Node-RED
	Building a Node-RED Flow
	Adding an LED Toggle
	Communicating over a Serial Connection to an Arduino or LaunchPad
	Problem
	Solution
	Discussion

	The Kernel
	Updating the Kernel
	Problem
	Solution
	Seeing which kernels are installed

	Building and Installing Kernel Modules
	Problem
	Solution

	Compiling the Kernel
	Problem
	Solution

	Downloading and Compiling the Kernel
	Installing the Kernel on the Bone
	Installin a Cross Compiler
	Problem
	Solution

	Setting Up Variables
	Applying Patches
	Problem
	Solution

	Creating Your Own Patch File
	Problem
	Solution

	Real-Time I/O
	I/O with Python and JavaScript
	Problem
	Solution

	I/O with devmem2
	Problem
	Solution

	I/O with C and mmap()
	Problem
	Solution

	Tighter Delay Bounds with the PREEMPT_RT Kernel
	Problem
	Solution

	Cyclictest
	I/O with simpPRU
	Problem
	Solution

	Background

	Capes
	Connecting Multiple Capes
	Problem
	Solution

	LCD Backside
	Audio cape pins
	Moving from a Breadboard to a Protoboard
	Problem
	Solution
	BeagleBone Breadboard

	Creating a Prototype Schematic
	Problem
	Solution

	Verifying Your Cape Design
	Problem
	Solution

	Testing the quickBot motors interface (quickBot_motor_test.js)
	Laying Out Your Cape PCB
	Problem
	Solution

	Customizing the Board Outline
	Fritzing tips
	PCB Design Alternatives
	EAGLE
	DesignSpark PCB
	Upverter
	Kicad

	Migrating a Fritzing Schematic to Another Tool
	Problem
	Solution

	Producing a Prototype
	Problem
	Solution

	Creating Contents for Your Cape Configuration EEPROM
	Problem
	Solution

	Putting Your Cape Design into Production
	Problem
	Solution

	Parts and Suppliers
	Prototyping Equipment
	Resistors
	Transistors and Diodes
	Integrated Circuits
	Opto-Electronics
	Capes
	Miscellaneous

	Misc
	BeagleConnect Freedom
	Useful Links
	micropython Examples

	Setting up shortcuts to make life easier
	Setting up a root login
	Wireshark
	Running Wireshark on the Beagle
	Running Wireshark on the host
	Sharking the wpan radio

	Find what UU is in i2cdetect
	Problem
	Solution

	Converting a tmp117 to a tmp114
	Problem
	Solution
	Compiling the module
	Converting to the tmp114
	Finding your I2C device
	Registers and IDs
	Creating a new device

	Documenting with Sphinx
	Problem
	Solution
	Downloading Sphinx
	Creating A New Book

	Running Sparkfun’s qwiic Python Examples
	Qwiic Alphanumeric display

	Controlling LEDs by Using SYSFS Entries
	Problem
	Solution

	Controlling GPIOs by Using SYSFS Entries
	Problem
	Solution

	Reading a GPIO Pin via sysfs
	Writing a GPIO Pin via sysfs
	The Play’s Boot Sequence
	Booting for the User
	Booting for the Developer
	Boot Flow
	Source Code

	Home Assistant
	mqtt

