- ﬁ BeaglePlay

BeagleBoard.org Foundation
Oct 29, 2025

Table of contents

1 Introduction
1.1 Detailed overview o o e e e e e e e
1.1.1 AMB254 SOC e e e e e e e e e e e
1.1.2 Board components location L e e e e

2 Quick Start Guide

2.1 What'sincluded inthe box? e e e e e e e e e e
2.2 Attachingantennas. L e e e e e e e e e e e
2.3 Tethering to PC o e e e e e e e e
2.4 Access VSCode e e e e e e e e

2.4.1 USB . . . o e e e e e e e e e e

2.4.2 Access PoINt L e e e e e e e e e e
2.5 DemosandTutorials e e e e e e e e e e e

3 Design and specifications
3.1 Block diagram e
3.2 Systemon Chip (SOC) o o e e e e e e e e e
3.3 Power management L L e e e e e e e
3.3.1 1.0VLDO o e e e e e e
3.3.2 3.3VDCDChUCK o o e e e e e e e
3.3.3 PMIC . . . o e e e
3.4 General Connectivity and Expansion L e
3.4.1 USBAG&USBC o e e e e e e e e e e e e
3.4.2 2ch 10bIit ADC o o e e e e e e
3.4.3 mikroBUS e e e e e e e
3.4.4 GrOVE . . v i i i e e e e e e e e e e e
3.45 QWIIC . . . o o e e e e
3.5 Buttonsand LEDS e e e e e e e e e e e e e
3.5.1 BULtONS L e e e e e
3.5.2 LEDS o e e e e e e
3.6 Wired and wireless connectivity e e e e e e e
3.6.1 Gigabitethernet L e e e e e
3.6.2 Single pairethernet e e e e e
3.6.3 WIFi 2.4G/5G o e e e e e e e e
3.6.4 BLE&SUbGHz e e e
3.7 Memory, Media and Data storage e e e e e e e e
3.7.1 DDR4 . . e e e
3.7.2 eMMC/SD e e e e
3.7.3 microSD Card e e e e e e e e e e e
3.7.4 Board EEPROM e e e e e e
3.8 Multimedia I/O e e e e e e e e
3.8.1 HDMI . . . e e e e
3.8.2 OLDI o e e e e
3.8.3 CSl. . . o e e e e e e e
3.9 RTC&Debug e e e
3.9.1 RTC . . o e e e e e e
3.9.2 UART Debug Port e e e e e e e e e e e

u b~ s W

©

10
10
12
12
12
12

15
15
15
15
16
16
19
20
20
20
21
21
21
21
23
23
23
23
24
25
25
25
25
25
25
25
25
25
29
29
29
29
29

3.9.3 AMGB2x JTAG & TagConnect o 0 i e e e e e e e e e e e e 29

3.9.4 CC1352 JTAG & TagConnect o o o i e e 29
3.10 Mechanical Specifications L e 29
3.10.1 Dimensions & Weight e e e e e e 31
Expansion 33
4.1 mikroBUS e e e e e e e e e 33
4.2 GrOVE . . v v o o e e e e e e e e e e e e e 33
4.3 QWIIC . . o o e e e e e 33
] 33
4.5 OLDI . . o e e e e 34
Demos and tutorials 35
5.1 Using Serial Console o e e e e e e e e e e e e e e 35
5.2 Connect WIFi o o e e e e e e e 36
5.2.1 BeaglePlay WiFi Access Point e e e 36
5.2.2 WPa Ui« . . o e e e e e e e e e e e e e e e 37
5.2.3 wpa_cli(shell) e e e e e e e 41
5.2.4 wpa_cli (XFCE) o o o o e e e e e e e 41
5.2.5 Disabling the WIFI Access Point @ 0 i i i e e e 45
5.2.6 Re-Enabling the WIFI Access Point o 46
5.3 Using Grove e e e e e e e e 46
5.4 Using mikroBUS e e e e 46
5.4.1 Using boards with ClickID o e e e e e e e 47
5.4.2 Using boards with Linux drivers 0 e e e e e e e e e 52
5.4.3 How does ClickID work? e e e e e e e 53
5.4.4 Disabling the mikroBUS driver e e e e e e 53
5.5 Using QWIIC e e e e e e e 54
5.5.1 OLED Display using QWIIC e e e e e e e 55
5.5.2 Wiring/Connection e e e e e e e e e e e e 55
5.5.3 Using Python libraries to display on OLED. 56
5.6 Using Node-RED 0 e e e e e e e e e e e e e e 60
5.6.1 Pre-requisites e e e e e e e e 60
5.6.2 Node-RED e e e e e 60
5.6.3 MIKroE e e e e e e 61
5.6.4 Let'sgetstarted! L e e e e e e e 61
5.7 Using RTC o e e e e e e e e e e e e e e e e 64
5.7.1 Understanding multiple rtc devices 64
5.7.2 Get the current time, timezone, and othersettings 65
5.7.3 Setting thetimezone e 65
5.7.4 Enablentp e e e e e e 65
5.7.5 Settingthetimemanually e 65
5.7.6 Using rtcwaketosleep e e e e 65
5.8 Using OLDI Displays e e e e e e e e e e e 66
5.9 Using CSICameras v i i i i e e e e e e e e e e e e e 66
5.10 Wireless MCU Zephyr Development 0 0 0 i i i e e e e e e e e e e e e e 66
5.10.1 Install the latest software image forBeaglePlay 66
5.10.2 Log into BeaglePlay e e e e e e e 67
5.10.3 Flash existing IEEE 802.15.4 radio bridge (WPANUSB) firmware 67
5.10.4 Setup Zephyr development on BeaglePlay, 70
5.10.5 Build applications for BeaglePlay CC1352 v v v it 71
5.10.6 Build applications for BeagleConnect Freedom 71
5.11 BeaglePlay Kernel Development L e e e e e 72
5.11.1 Getting the Kernel Source Code i i e 72
5.11.2 Preparing to Build L e e e e e e 73
5.11.3 Configuring the Kernel e 73
5.11.4 Building the Kernel 0 0 e e e e e e e e e e 73
5.11.5 Installing and Booting the Kernel 74
5.11.6 Kernel Debug e e e e e e e e e e e 74

5.11.7 References o i e e e e e e e e e 74

5.12 BeagleConnect™ Greybus demo using BeagleConnect™ Freedom and BeaglePlay 74
5.12.1 BeaglePlay CC1352 Firmware o v i it it e e e e e e e 74
5.12.2 Building gb-beagleplay Kernel Moduleo e 77
5.12.3 Flashing BeagleConnect Freedom Greybus Firmware 78
5124 Runthe Demo o i e e e e e e e e e e e e e e 78

5.13 Understanding Boot L e e e e e e e e e e e e e 80
5.13.1 Distro Boot e e e e e e e e 80
5.13.2 Booting U-Boot e e e e e e 83

5.14 Smart energy efficient video doorbell e 83
5.14.1 About deep sleep e e e e e e e e e e e e 84
5.14.2 Hardware requirements o e e e e e e e e e e e e e e e 84
5.14.3 Software requirements e e e e e e e e 84
5.14.4 Devicetree changes e e e e e e e e e e 85
5.14.5 LinuXx cOmMmMandS v v e 86
5.14.6 RESOUICES . . v v v v v e i e 90

Support 91

6.1 Production board boot media L 91

6.2 Certifications and exportcontrol L L 91
6.2.1 Exportdesignations. L e 91
6.2.2 Sizeandweight L e 91

6.3 Additional documentation e e e e e e e e e e 91
6.3.1 Hardware doCs e e e e e e e 91
6.3.2 Software doCs e e e 91
6.3.3 Supportforum L e e e e e e e 92
6.3.4 Pictures e e e e e e e e 92

6.4 Change History 0 e e e e e e e e e e e e 92
6.4.1 Board Changes 0 e e e e e e e e e e e e e e e 92

BeaglePlay

BeaglePlay is an open-source single board computer based on the Texas Instruments AM6254 quad-core Cortex-
A53 Arm SoC designed to simplify the process of adding sensors, actuators, indicators, human interfaces, and

connectivity to a reliable embedded system.

EEE I]

E"EEE

T —

wonJZE DR

Ly al
ERE e,

= 2 JTAG-CC1352P "8
B e’

Table of contents

BeaglePlay

2 Table of contents

Chapter 1

Introduction

BeaglePlay is an open-source single board computer designed to simplify the process of adding sensors, ac-
tuators, indicators, human interfaces, and connectivity to a reliable embedded system. It features a powerful
64-bit, quad-core processor and innovative connectivity options, including WiFi, Gigabit Ethernet, sub-GHz
wireless, and single-pair Ethernet with power-over-data-line. With compatibility with 1,000s of off-the-shelf
add-ons and a customized Debian Linux image, BeaglePlay makes expansion and customization easy. It also
includes ribbon-cable connections for cameras and touch-screen displays, and a socket for a battery-backed
real-time-clock, making it ideal for human-machine interface designs. With its competitive price and user-
friendly design, we expect BeaglePlay to provide you with a positive development experience. Some of the
real world applications for BeaglePlay include:

¢ Building/industrial automation gateways
* Digital signage
* Human Machine Interface (HMI)

¢ BeagleConnect sensor gateways

W

®™12 Micro sD

go

»
n
y
N
3
b
9
3
3
v

= ‘z.45.éus6
BeaglePlay e
)

I
@ LR

7208 A 94V-0

E225430 KB-04.

Trisel] o

BeaglePlay

1.1 Detailed overview

BeaglePlay is built around Texas Instruments AM62x Sitara™ Processors which is a Quad-Core Arm® Cortex®-
A53 Human-machine-interaction SoC. It comes with 2GB DDR4 RAM, 16GB eMMC storage, Full size HDMI, USB-A
host port, USB-C power & connectivity port, serial debug interface, and much more.

Table 1.1: BeaglePlay features

Feature Description

Processor TI AM6254 (multicore A53s with R5, M4s and PRUs)
PMIC TPS6521901

Memory 2GB DDR4

Storage 16GB eMMC

WiFi

PHY: WL1807MOD (roadmap to next-gen TI CC33XX WiFi 6
& BLE)

Antennas: 2.4GHz & 5GHz

BLE/SubG
¢ CC1352P7 M4+MO with BeagleConnect firmware
* BeagleConnect Wireless enabled
* Antennas: 2.4GHz & SubG IEEE802.15.4 software defined
radio (SDR)
Ethernet

PHY: Realtek RTL8211F-VD-CG Gigabit Ethernet phy

Connector: integrated magnetics RJ-45

Single-pair Ethernet

BeagleConnect Wired enabled

PHY: DP83TD510E 10Mbit 10BASE-T1L single-pair Ether-
net phy

Connector: RJ-11 jack

Power (PoDL): Input: N/A (protection to 12V), Output: 5V

@ 250mA
USB type-C
* PD/CC: None, HS shorted to both sides
¢ Power: Input: 5V @ 3A, Output: N/A (USB-C DRP Not sup-
ported)
HDMI

Transmitter: 1T66121

Connector: full-size

Other connectors

microSD

USB 2.0 type-A (480Mbit)

mikroBUS connector (12C/UART/SPI/MCAN/MCASP/PWM/GPIO)
Grove connector (I2C/UART/ADC/PWM/GPIO)

QWIIC connector (12C)

CSI connector compatible with BeagleBone Al-64, Rasp-
berry Pi Zero / CM4 (22-pin)

OLDI connector (40-pin)

1.1.1 AM6254 SoC

The low-cost Texas Instruments AM625 family of application processors are built for Linux® application de-
velopment. With scalable Arm® Cortex®-A53 performance and embedded features, such as: dual-display
support and 3D graphics acceleration, along with an extensive set of peripherals that make the AM62x device

4 Chapter 1. Introduction

BeaglePlay

well-suited for a broad range of industrial and automotive applications while offering intelligent features and
optimized power architecture as well.

Some of the SoC applications include:
* Industrial HMI
¢ EV charging stations
¢ Touchless building access
¢ Driver monitoring systems

AMG625 processors are industrial-grade in the 13 x 13 mm package (ALW) and can meet the AEC-Q100 automo-
tive standard in the 17.2 x 17.2 mm package (AMC). Industrial and Automotive functional safety requirements
can be addressed using the integrated Cortex-M4F core and dedicated peripherals, which can all be isolated
from the rest of the AM62x processor.

Tip: For more details checkout https://www.ti.com/product/AM625

The 3-port Gigabit Ethernet switch has one internal port and two external ports with Time-Sensitive Networking
(TSN) support. An additional PRU module on the device enables real-time I/O capability for customer’s own
use cases. In addition, the extensive set of peripherals included in AM62x enables system-level connectivity,
such as: USB, MMC/SD, CSI Camera interface, OSPI, CAN-FD and GPMC for parallel host interface to an external
ASIC/FPGA. The AM62x device also employs advanced power management support for portable and power-
sensitive applications.

1.1.2 Board components location

Front

JTAG Expansion

Power

)

Power and USB connectivity

: J | -~ —)

Debug) = A 2 | - of Display

06 ko1¢a1603g

Host

Camera

Gigabit Ethernet

Network Connectivity Expansion

$8+09€3

SinglePair Ethernet }

Network Connectivity

Power & connectivity

LEDs

Expansion

m User/Boot

DL Storage

§ beagleboard.org

Fig. 1.1: BeaglePlay board front components location

1.1. Detailed overview 5

https://www.ti.com/product/AM625

BeaglePlay

Table 1.2: BeaglePlay board front components location

Feature

Description

RTC Battery
User LEDs

JTAG (AM62)
mikroBUS
OLDI

Csl

Grove
QwiIIC

User Button

SD Card

Reset button

JTAG (CC1352)

Power button

Power & Connectivity
LEDs

Single-pair Ethernet
GigaBit Ethernet

BQ32002 Real Time Clock (RTC) Battery holder takes CR1220 3V battery

Five user LEDs, board-power-and-boot section provides more details. These LEDs are connect to the AM6254
SoC

AM6254 SoC JTAG debug port

mikroBUS for MikroE Click boards or any compliant add-on

AM6254 OpenLDI(OLDI) display port

AM6254 Camera Serial Interface (MIPI CSI-2)

SeeedStudio Grove modules connection port

SparkFun QWIIC / Adafruit STEMMA-QT port for I2C modules connectivity

Programmable user button, also servers as boot mode slect button (SD Card/eMMC). Press down to select SD
Card as boot medium

Use to expand storage, boot linux image or flash latest image on eMMC

Press to reset BeaglePlay board (AM6254 SoC)

JTAG debug port for CC1352P7

Press to shut-down (OFF), hold down to boot (ON)

Indicator LEDs for Power ON, CC1352 RF, and Single-pair connectivity

Single-pair Ethernet connectivity port with power over data line
1Gb/s Wired internet connectivity

HDMI Output Full size HDMI port for connecting to external display monitors
USB-A host port Port to connect USB devices like cameras, keyboard & mouse combos, etc
USB-C port Power and Device data role port

Back

WL1807 2.4GHz/5GHz uFL
WL1807 2.4GHz/5GHz uFL

CC1352P7 2.4GHz uFL
CC1352P7 SubGHz uFL

wL1807MOD Jll DP83TD510E il RTL8211F Jll AM6254 |

Dualband 2.4G/5G WiFi SP-Ethernet Ethernet SoC

Antenna

16GB eMMC

Antenna Storage

[CC1352P7 o

BLE+SubGHz

£TT)

Cueo zEsE;

2GB DDR4

Memory

‘Vl
15
&
!
!

Antenna

RTC

Antenna

TPS6521901

PMIC

1IT66121 ﬁ beagleboard.org

Fig. 1.2: BeaglePlay board back components location

Chapter 1. Introduction

BeaglePlay

Table 1.3: BeaglePlay board back components location

Feature Description

CC1352P7 2.4GHz BLE + SubG IEEE 802.15.4 with 1 x 2.4GHz + 1 x SubG uFL antenna
WL1807MOD Dual band (2.4GHz & 5GHz) WiFi module with 2 x uFL antennas
DP83TD510E Single-pair IEEE 802.3cg 10BASE-T1L Ethernet PHY

RTL8211F Gigabit IEEE 802.11 Ethernet PHY

AM6254 Main SoC

16GB eMMC Flash storage

2GB DDR4 RAM / Memory

BQ32002 Real Time Clock (RTC)

TPS6521901 Power Management IC

IT66121 HDMI Transmitter

1.1. Detailed overview

BeaglePlay

8 Chapter 1. Introduction

Chapter 2

Quick Start Guide

2.1 What’s included in the box?

When you purchase a brand new BeaglePlay, In the box you’ll get:

1.

2
3
4.
5

BeaglePlay board

. One (1) sub-GHz antenna

. Three (3) 2.4GHz/5GHz antennas

Plastic standoff hardware

. Quick-start card

Important:

Depending on the size of the standoff hex-nuts, please ensure that you have a good hold
on the nut as you secure it. The clearance between mounting-hole and eMMC is a little tight

and you will want to avoid accidentally damaging the eMMC while mounting.

Tip:

For board files, 3D model, and more, you can checkout BeaglePlay repository on OpenBeagle.

https://www.beagleboard.org/boards/beagleplay
https://openbeagle.org/beagleplay/beagleplay

BeaglePlay

2.2 Attaching antennas

You can watch this video to see how to attach the antennas.

2.3 Tethering to PC

Tip: Checkout beagleboard-getting-started for,
1. Updating to latest software.

Power and Boot.

Network connection.

Browsing to your Beagle.

vk W N

Troubleshooting.

For tethering to your PC you’ll need a USB-C data cable.

10 Chapter 2. Quick Start Guide

BeaglePlay

BeaglePlay

Unboxing & Antenna Connection

Fig. 2.1: https://youtu.be/8zelVd-JRcO

Fig. 2.2: Tethering BeaglePlay to PC

2.3. Tethering to PC 11

https://youtu.be/8zeIVd-JRc0

BeaglePlay

2.4 Access VSCode

You can access VSCode in two ways:

1. USB

2. Access Point

2.4.1 USB

Once connected, you can browse to 192.168.7.2:3000 to access the VSCode IDE to browse documents and
start programming your BeaglePlay!

2.4.2 Access Point

By default BeaglePlay Access Point is enabled, You can connect to BeaglePlay—XXXX Access Point with
the password BeaglePlay and then browse to 192.168.7.2:3000 to access the VSCode IDE.

Note:

You may get a warning about an invalid or self-signed certificate. This is a limitation of not having a

public URL for your board. If you have any questions about this, please as on https://forum.beagleboard.org/
tag/play.

EXPLORER

/ BEAGLEBOARD (WORKSPACE)
v examples
v BeagleBone/ Black
> gpiod
% analogln.py
analogInCallback js
% analogInContinuous.py
analogInOut js
analogInSync.js
$ blinkInternalLED.sh
S blinkLED.bs js
C blinkLED.c
blinkLED js
2 blinkLED.py
$ blinkLED.sh
@ blinkLED2.py
blinkLEDold.py
S fadeLED.js
fadeLED.py
inputjs
input2js
® README.md
seqLEDs.py
swipeLED s
@ gitignore

{} BeagleBoard.code-workspace

LICENSE
® README.md

{} settings.json

> OUTLINE
> TIMELINE

Pmain & ®oAo @Wo

LICENSE X >OOGO -

examples > fi LICENSE
1 MIT License

Copyright (c) 2021 BeagleBoard.org

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

9 copies of the Software, and to permit persons to whom the Software is

10 furnished to do so, subject to the following conditions:

12 The above copyright notice and this permission notice shall be included in all
13 copies or substantial portions of the Software.

15 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

PROBLEMS ~ OUTPUT DEBUG CONSOLE ~ TERMINAL PORTS Bbash +~ M @ ~ X

® debian@BeaglePlay:~/examples$ neofetch

_./met$$s$sgg. debian@BeaglePlay 1
S BISSSSSSSEESSEIP. oo '
18$SP" LR £ £ TN 0S: Debian GNU/Linux 11 (bullseye) aarch64 g
L$$P" T$$8. Host: BeagleBoard.org BeaglePlay
'L $$P 188S. “$$b: Kernel: 5.10.153-ti-armé4-r86
“dss S$P . $$$ Uptime: 51 mins :
$$P ds’ B $$P Packages: 1379 (dpkg)
$$: $$. - ,ds" Shell: bash 5.1.4
$$; Y$b._ _,d$P" Terminal: vscode
Y$$. TLUUYSSSSPT CPU: (4) @ 1.400GHz
“$$b LT, Memory: 658MiB / 1927MiB
'Y$$
*$$b. | |
“Y$$b.
“"Y$b._

debian@BeaglePlay:~/exampless ||

Ln1,Col1 Spaces:4 UTF-8 LF Markdown Layout:us [

Fig. 2.3: BeaglePlay VSCode IDE (192.168.7.2:3000)

Tip: For more Wifi and Access Point related info go to Connect WiFi

2.5 Demos and Tutorials

e Using Serial Console

12

Chapter 2. Quick Start Guide

http://192.168.7.2:3000
http://192.168.7.2:3000
https://forum.beagleboard.org/tag/play
https://forum.beagleboard.org/tag/play

BeaglePlay

» Connect WiFi

e Using QWIIC

e Using Grove

* Using mikroBUS

* Using OLDI Displays

e Using CSI Cameras

e Wireless MCU Zephyr Development
* BeaglePlay Kernel Development

e Understanding Boot

2.5. Demos and Tutorials

13

BeaglePlay

14 Chapter 2. Quick Start Guide

Chapter 3

Design and specifications

If you want to know how BeaglePlay is designed and the detailed specifications, then this chapter is for you. We
are going to attempt to provide you a short and crisp overview followed by discussing each hardware design
element in detail.

Tip: You can download BeaglePlay schematic to have clear view of all the elements that makes up the
BeaglePlay hardware.

BeaglePlay design repository

3.1 Block diagram

The block diagram below shows all the parts that makes up your BeaglePlay board. BeaglePlay as mentioned
in previous chapters is based on AM6254 SoC which is shown in the middle. Connection of other parts like
power supply, memory, storage, wifi, ethernet, and others is also clearly shown in the block diagram. This
block diagram shows the high level specifications of the BeaglePlay hardware and the sections below this are
going to show you the individual part in more detail with schematic diagrams.

3.2 System on Chip (SoC)

AM62x Sitara™ Processors from Texas Instruments are Human-machine-interaction SoC with Arm® Cortex®-
A53-based edge Al and full-HD dual display. AM6254 which is on your BeaglePlay board has a multi core design
with Quad 64-bit Arm® Cortex®-A53 microprocessor subsystem at up to 1.4 GHz, Single-core Arm® Cortex®-
M4F MCU at up to 400MHz, and Dedicated Device/Power Manager. Talking about the multimedia capabilities of
the processor you can connect upto two display monitors with 1920x1080 @ 60fps each, additionally there is
a OLDI/LVDS (4 lanes - 2x) and 24-bit RGB parallel interface for connecting external display panels. One 4 Lane
CSI camera interface is also available which has support for 1,2,3 or 4 data lane mode up to 2.5Gbps speed.
The list of features is very long and if you are interested to know more about the AM62x SoC you may take a
look at AM62x Sitara™ Processors datasheet.

3.3 Power management

Different parts of the board requires different voltages to operate and to fulfill requirements of all the chips on
BeaglePlay we have Low Drop Out (LDO) voltage regulators for fixed voltage output and Power Management
Integrated Circuit (PMIC) that interface with SoC to generate software programable voltages. 2 x LDOs and 1
X PMIC used on BeaglePlay are shown below.

15

https://git.beagleboard.org/beagleplay/beagleplay
https://www.ti.com/product/AM625
https://www.ti.com/lit/ds/symlink/am625.pdf

BeaglePlay

BeaglePlay System Block Diagram

- Power Source

(" 25MHz Crystal

DP/DM ‘
USB_1 RMII2 EEE 802.3cg 10BASETIL. Barrel Jack
5V
a >

USB Type-C Connector... <

vl voesoom o «—————{ cgmucrens. | [—
1.8V VDDA_1P8_USB =,

EE VDDA_1P8_CSl... nEa —_—
——
VDDA _1P8_OLDI e WLAN_EN/32k_CLK Fi/2.4G MIMO/5G SISO... UFL.. ‘
L <
VDDSHV2

ANT1,ANT2: 2.4~2.5GHz; 5.1~5.8GHz
GH

48MHz Crystal | (32.768kHz Grystal | ANT_2.4G: 2.4-2.5GHz
VDDSHV4 | 48MHz Crystal | (s27eektz Crysial) ANT_SubG: 906~924 MHz
VDDSHV5 USART 6 «—————————————>|
BLE/SUbG... UFL.
VDDSHV6 GPIO ————————»|
USBO «— >

VDDSHVMCU 0SS0 %’ HDMI Transmitt HDMI Type-A ‘
nsmitter y
Y] X ansmitte ype
078V ——— VDD CORE —
N

085V > VDDR_CORE (h -
s E Gurrent Limit Switch and. }(—»{ USB Type-A ‘
V_SEL) -

VSEL SD &= GPIO E

MMC_t || Micro SD Gard Socket ‘
AMe2x |
VDD_3V3 =,

cst AN1
MCU_SPIT «——>1 5/ 2Channel, 10-Bit AID.
[LEE- B8 VBRI -

(Reset Button }
)
J

(Power Button

PMIC TPS65219

12G/
v VDDSHV1 S cso
SPI/ VDDSHV_CANUA... PWM/AN/RST/INT
GPIO/ PO RXD/TXD
LD SDA/SCL
D — LDO.. VDD_1VO 12c3

["32.768KHz Crystal }—» N2
- Grove Connector...
eMMC 16GB MMC_0 12G1
12C2 (" Qwiic Connector
usaRT 0 4—. bEslG

J

J

User Button | ———) ———
- FPC 40pin |
J

J

oLpI

4x User LED je——cpro

[/
{

‘ csi { FPC 22pin

(25MHz Crystal |

e ——— VPP {

[se7eskHzCrystal ——

2-PIN Header

Text s not SVG - cannor display

3.3.1 1.0V LDO

TLV75801 is an adjustable 500-mA low-dropout (LDO) regulator. Consumes very low quiescent current and
provides fast line and load transient performance. The TLV758P features an ultra-low dropout of 130 mV at 500
mA that can help improve the power efficiency of the system. The TLV758P is stable with small ceramic output
capacitors, allowing for a small overall solution size. A precision band-gap and error amplifier provides high
accuracy of 0.7% (max) at 25°C and 1% (max) over temperature (85°C). This device includes integrated thermal
shutdown, current limit, and undervoltage lockout (UVLO) features. The TLV758P has an internal foldback
current limit that helps reduce the thermal dissipation during short-circuit events.

TLV75801 provides 1.0V required by the single-pair Ethernet PHY (U13 - DP83TD510ERHBR). It was decided
this was less likely to be needed than the other rails coming off of the primary PMIC and therefore was given
its own regulator when running low on power rails.

Note: The voltage drop from 1.8V to 1.0V is rated up to 0.3A (240mW), but the typical current from the
DP83TD51E data sheet (SNLS656C) is stated at 3.5mA (2.8mW) and the maximum is 7.5mA (6mW). This isn’t
overly significant on a board typically consuming 400mA at 5V (2W). However, this is an area where some
power optimization could be performed if concerned about sleep modes.

3.3.2 3.3V DCDC buck

TLV62595 is a high-frequency synchronous step-down converter optimized for compact solution size and high
efficiency. The device integrates switches capable of delivering an output current up to 4 A. At medium to
heavy loads, the converter operates in pulse width modulation (PWM) mode with typical 2.2-MHz switching
frequency. At light load, the device automatically enters Power Save Mode (PSM) to maintain high efficiency
over the entire load current range with a quiescent current as low as 10 pA.

This provides 3.3V for the vast majority of 3.3V I/Os on the board, off-board 3.3V power to microSD, mikroBUS,
QWIIC and Grove connectors, as well as to the PMIC LDO to provide power for the 1.8V on-board 1/0s, DDR4, and

16 Chapter 3. Design and specifications

BeaglePlay

Application Cores

Arm® Arm®
Cortex®-A53 Cortex®-A53

A rm@ A rm@
Cortex™-A53 Cortex™-A53

512KB L2 with ECC

8x UART
CAN-FD 3x eCAP

5x 2C

HSM
(Secure Boot)

426KB SRAM

Device/Power System m

Manager Monitor

. . . DDR4/LPDDR4
General Connectivity (Main Domain) General Connectivity with inline ECC 3x MMCSD
16b
2-port Gb E thernet w/ 1588 UHEES) (16)

AMe62x
MCUSS With FFI

Arm®
Cortex’-M4F

System Memory

256KB TCM

64KB OCRAM
with ECC

Multimedia

2x Display 3D Graphics

with DPT Processing Unit

UART and OLDI/LVDS

2x CAN-FD
CSI2 w/DPHY

0

Security

DRBG
TRNG

System Services

Boot

IPC Timers

Secure

Fig. 3.1: AM6254 SoC block diagram

3.3. Power management

BeaglePlay

BeaglePlay Power Block Diagram

1.0 230mA } otor ‘
Ve Y 3.3V@3A 241A 200mA VDDSHVO/A/... 250ma e
—"‘){ Single-Pair Ethernet PoDL ‘
ERE>e 1.8V@400mA 200mA h }
Lpog |1-8V@400m m VDDA_1P8_USB..
LDOIN_1/3/4 IS
S J E s
20mA
0.85V@400mA 80mA 1 = > How! ‘
Buck1/2/3 Lpog |2-85V@400m! m VDDR_CORE « @
Buck2 00 5! Lbom 2 Buck LTV@35A 2850mA_s, | vob_GORE soomn —
m
1.2v@2A 067A 200mA — USBTYPE-A ‘
MG, Buckd VDDS_DDR L)
1.8v@2A 7A 200mA
Bucke azvﬁ7 8V@400mA > 6202 VoD
. m m P -
LDO1 VDDSHVS 100mA
%™ 5/ vopsv
Testpoint &—>| VPP
LDO4 2.5V@400mA 0.195A N . mikroBus
500m, 100m VoDavs
N
igg\kA \VPP DDR4
m
vep 300mA
m _Micro SD Card
122"‘2 Vopio MMC
o
= vee 100mA
- Grove/Quiic Connector
1 A
35m VDDAZPS
RTLB211F-VD-CG
S0mA vDDIO
130mA
:2’“: AVDD
01A Lov oomm mmA VDDIO DPB3TD510E
Lo, L DVDD
1 A
000MA_ [vigar
200mA | WL1807
10
10mA
‘g"'A VD33
70’"A VDDIO ITEB121FN
- oL vop12

100mA cC1352P
Textis no SVG - camnot display

VDD_1V8

—[FL2120R /)

U/ 13an | u16
BLM18PG121SN1D C204 TLV75801PDBVR VDD_1V0
R210

0402 TuF
10K 10V
1% C0402 1 5

03A Tp27
R0402 IN out O
3 4 U18.FB
EN FB Vfb=0.55V R211 €263

[a)
Z 100K
(G)

1% 10V
N R0402 0402
SOT23-5 e

R212
Vout = Vfb x (1 + R211/ R212) 120K
=0.55V x (1 + 100K / 120K) 1%
=0.55V x 1.8333 R0402
=1.008V

Fig. 3.2: TLV75801PDBVR LDO schematic for 1V0 output

18 Chapter 3. Design and specifications

BeaglePlay

VSYS 5V
133
R138 R137 10uF
10K 10K 10v
19% % C0603 u12 VDD_3v3
RO402 [R0402 = 1180.47uH
6 3A TP26
VIN sw 5 =OA O
VDD_3V3_EN 1 C98120pf
EN FB C040221
P19 VDD_3V3_PG 2 4 | R260270K, A R30718 134 135
O PG GND R0402 T oA N 22UF :,_ZZUF
R26110) 25v 25v
TIV62595DMQR R — l C0805 | C0805
VSON-6
vson6_0d5_1d5x1d5x1Tmm

Vout = Vfb x (1 + R260/ R261)

=0.6V x (1 + 450K/ 100K)

=0.6Vx5.5
=33V

Fig. 3.3: TLV62595DMQ step-down regulator schematic for 3V3 output

gigabit Ethernet PHY. Due to the relatively high current rating (3A), a highly efficient (up to 97%) was chosen.

Note:

power-good signal (VDD_3V3_PG) is available at TP19 and is unused on the rest of the board.

The primary TPS65219 PMIC firmware uses GPO2 to provide the enable signal (VDD_3V3_EN). The

3.3.3 PMIC

The TPS65219 is a Power Management IC (PMIC) designed to supply a wide range of SoCs in both portable
and stationary applications. The DC-DC converters are capable of 1x 3.5 A and 2x 2 A. The converters require

a small 470 nH inductor, 4.7 pF input capacitance, and a minimum 10 uF output capacitance per rail.

Two

of the LDOs support output currents of 400 mA at an output voltage range of 0.6 V to 3.4 V. These LDOs
support bypass mode, acting as a load- switch, and allow voltage-changes during operation. The other two
LDOs support output currents of 300 mA at an output voltage range of 1.2 V to 3.3 V. The LDOs also support
load-switch mode. The I2C-interface, 10s, GPIOs and multi-function-pins (MFP) allow a seamless interface to a
wide range of SoCs.

VSYS 5V

u17

4
PVIN BT 1 —
s 81
62 PVIN.B12 — Buck
10uF
10
0603
B VSYS SV
30 pvine2 —
63 Buck2
10uF
10
C0603
= VSYS 5V
2 pvines —
c6a Bucks
10uF
10V
0603
VDD_3v3 VDD_1V8 VDD 3v3 =
T L 00T
g PVIN_LDO1
55| PVIN_LDO2 —{—TDOZ 777}
PVIN_LDO34: po
D04
c12s iz ena | cios VDD 3V3 VSYSSV VSYSSV
220F Sm220F == 2208
10V 10V 13
co402 _|_coa02 toic VSYS INTLDO
= = = = 14| vopies
RS54 0 R228 QO RI61 cs3 52
Tk 2 10k 9 Tk 2.20F 2208
1% 1%
Rosoz | Ros02 | Roa02 Coion
1
[13,18] 12€0.SCL o scL
[13,18] 12C0_SDA al PWRETN 52 SDA DIGITAL
1] PWRBIN o = z
99 SDVOLTSEL [w 6} VSEL SD/VSEL_DDR
[9,10,11,12,16,19] RESETSTATZ v S MODE_RESET
[16] PMIC_LPM_ENO [

This is the primary power management integrated circuit (PMIC) for the design.

MODE_STBY The

X 83

FB_B3

VLDO1
VLDO2
VLDO3
VLDO4

nRSTOUT
nINT

AGND
ermal Pad

VDD_CORE

0.

cs0

75V
A

—47uF

63V
0805

18

1
o2
w Lceu
32 47uF
6.3V
0805
VDD_1v2
27 L170.478~~ Tu P21
2520 SOA o
54
24 47uF
6.3V
0805
VDD _SD
VDDA 0V8s =
7 0aa | 22 VDDA 1V8
9 04A | ~ie2 VDD 2V5 VDD_1V8
21 93A | P2 T VDD, 3v3
23 03A | rpos
—2.2uF —2.2uF ——2.2uF 220F 0 RI59 2 R160
10V ov ov 10V 0K S 10K
0402 0402 0402 coa02 § 1% 1
R0402 [RO402

i}

UTOMCU_POR2[16,21]

16 PMIC_GPIO
VDD 3VIEN

TPS65219
QFN-32

Fig. 3.4: TPS65219 Power Management Integrated Circuit (PMIC) schematic

TOEXTINTN[16]

It coordinates the power

sequencing and provides numerous power rails required for the core of the system, including dynamic voltages

3.3. Power management

19

BeaglePlay

for the processor core and microSD card. The TPS6521903 variant is used for this DDR4-based system. The 03

at the end indicates the sequencing programmed into the device and is covered in the TPS6521903 Technical
Reference Manual SLVUC)2.

Todo: Add specific power-up/down sequence notes here as well a highlight any limitations and known issues.

3.4 General Connectivity and Expansion

One of the main advantage of using a Single Board Computer (SBC) is having direct accessibility of general
purpose input & output (GPIO) pins and other interfaces like 12C, SPI, ADC, PWM. Your BeaglePlay board shines
in this domain as well with mikroBUS connector that can take 1000s of click board from MikroElektronika,
Grove connector allows to connect hundreds of Grove modules from Seeed Studio, and QWIIC connector allows
to connect 12C modules like QWIIC modules from SparkFun or STEMMA QT modules from Adafruit. Note that
you also get one USB-A port and one USB-C port. BeaglePlay’s USB-A port with host support enables you to
connect any USB device like your keyboard & mouse. The USB-C connector allows you to power the board and
to connect the board to a PC. You can then connect via SSH or use the pre-installed VisualStudio Code editor
by putting the address 192.168.7.2:3000 in your web browser.

3.4.1 USBA &USBC

Below is the schematic of full size USB A for peripheral connection and USB C for device power & tethering.

VsYs sV

vsvs sv

R9410) R13220)
R0402 ™ R0402 i3 = TVSOS00DRVR

= SON-6(2x2)

2
5
[

na
TYPEC2.0
USB2 0 TYPE C

A4/BINBUS
A9/BA/VBUS

L1390R_400mA

uip UsB0_DP USB_C oM a7
1 NS

USBO Usso_op 4211

& 87N
X DN2
Pt GrOVDDA P S, eB0 D [AETT UsB0_ DM 4 N oo c or
WrGrp:VDDA_1P8_USB, N
VDDA _3P3_USB Usgo_reaLis [2EI RI314338, DIWZTSNB00HQ2L

P2
R0402 0% R128 0 R129
Act e 035 $ 5K S 5K st
USB0_VBUS ARG A8 5112y
hson@) Rodo2 [Ros02 fomz:m RS 52153
v

g9 use1 op 28 s8u2 s3
USB1 UsBIDP I"ADTO. USBT_OW 12 %
UsB1 DM g ABIZGND S5 152
PWrGrp:VDDA 1P8 USB, aco 130558 A12/BI/GND 56
VDDA 3P3_USB USB1_RCALIB R0 5% L =
810 usB1_vBUS =

TPDTETBO4DPY
W1

USB1_VBUS

GENERAL -
PWIGrp:VDDSHVO 33V USBO.DRWBUS [TFig > use1 DRWBUS

USB1_DRWBUS
Bgadz5_0a5_T313mm ANG2Y s
BGA425

SH1

L4SOR__ 400mA
2

1
USB A DM 2| VBUS |p
Z{ow
USB_A_DP. oP
4 3 A [2] 2% |p
STz i b
252mm EE si_s2
oo T
r13620 uss A sv
Fo0r 1%
n3
ws2 SFuss 174 1
To Vb rd samm
1% GND
R0z
vevs.sv
u
T E—
3 N out 4
5
2 o
r1331K ‘1 G
RO402 % LN © b2
- o
an | e sond —ioour
==Tour=roon Tov
Ts Imv Cizos
cos03] cozo1 SOT23
1 oo

Fig. 3.5: USB-A and USB-C

3.4.2 2ch 10bit ADC

The ADC102S051 is a low-power, two-channel CMOS 10-bit analog-to-digital converter with a high- speed se-
rial interface. Unlike the conventional practice of specifying performance at a single sample rate only, the
ADC1025051 is fully specified over a sample rate range of 200 ksps to 500 ksps. The converter is based on a

20 Chapter 3. Design and specifications

https://www.ti.com/lit/pdf/slvucj2
https://www.mikroe.com/
https://www.seeedstudio.com/grove.html
https://www.sparkfun.com/qwiic
https://www.adafruit.com/category/1005

BeaglePlay

successive-approximation register architecture with an internal track-and-hold circuit. It can be configured to
accept one or two input signals at inputs IN1 and IN2. The output serial data is straight binary, and is compat-
ible with several standards, such as SPI, QSPI, MICROWIRE, and many common DSP serial interfaces. We ar
using it over SPI. The ADC1025051 operates with a single supply that can range from +2.7V to +5.25V. Normal
power consumption using a +3V or +5V supply is 2.7 mW and 8.6 mW, respectively. The power-down feature
reduces the power consumption to just 0.12 uW using a +3V supply, or 0.47 uW using a +5V supply.

VDD_3v3 VDD_3V3A
FB17120%)
0402 / 13A
56 232 | 233

100nF 10nF=—=1uF
10v 63V | 10v
€0201 0201 | C0402 o> MCU_SPI1_CLK[16]
s> MCU_SPI1_DO[16]
1 5> MCU_SPI1_DI[16]

Uil

16 Mcuspr st <a o cs scuk 8
VA DOUT ¢
AIN2 R671K 4| onp oS RE81K AIN1
R0402 % R0402 %
234 | ADCT025051 235

I

100pF = VSSOP-8 100pF
50V 50V
C0402 C0402

Fig. 3.6: ADC1025051 - 12bit Analog to Digital Converter (ADC)

3.4.3 mikroBUS

mikroBUS is a standard specification by MikroElektronika that can be freely used by anyone following the
guidelines. It includes SPI, 12C, UART, PWM, ADC, reset, interrupt, and power (3.3V and 5V) connections to
common embedded peripherals.

VDD_3v3

R12510)
RO402 %
R20810)

21 0402

R %

AINY

=
2
g
g

T pz ms : St 7 g T

o2 022

BI30L13F 1A | GND2 GNOT = BI30L1ZF 1A

SWA sov MikroBus Female = SWA 30v
mikroBUS16_2d54_25_4x22_88x8_Smm

z
2

VoD_3v3

EDAS EDaW EDAU EDS?

TPD1E1B04DPY
N2
L4
g

1 e 2
L4
g

1 e 2
L4
g

1 e 2
e
)
2

1 e 2

TPD1E1B04DPY
»e
L4
2

1 and 2
L4
g

1 and 2
L4
2

1 and 2
L4
g

1 and 2

1
1

H—pg—2
M pg—2

Fig. 3.7: mikroBUS connector schematic

3.4.4 Grove
Seeed Studio Grove System is a modular, standardized connector prototyping ecosystem. The Grove System

takes a building block approach to assembling electronics. Compared to the jumper or solder based system, it
is easier to connect devices to an application, simplifying the learning system

3.4.5 QWIIC

Qwiic, or STEMMA QT are 4pin JST SH 1.00 connectors for easy 12C connection.

3.5 Buttons and LEDs

To interact with the Single Board Computers we use buttons for input and LEDs for visual feedback. On your
BeaglePlay board you will find 3 buttons each with a specific purpose: power, reset, and user. For visual
feedback you will find 5 user LEDs near USB-C port and 6 more indicator LEDs near your BeaglePlay’s Single
Pair ethernet port. Schematic diagrams below show how these buttons and LEDs are wired.

3.5. Buttons and LEDs 21

BeaglePlay

12C1_SCL[13]
[2C1_SDA[13]

R226
2.2k

1%
R0402

VDD_ _3V3
17
i —
1 FB27120\ AIN2 m
5 2 FB26120R o
6 3 FB25124%) ~ ~
4 FB31208/) > >
0402 |/ 13A & &

— 253§ D19 D20
4P-2.0mm-90D ——100nF @ @
JST4p_smd_2_0_90d 10V W)

€0201 & o)
o — o «—
pp— I = =
Fig. 3.8: Grove connector schematic
VDD:}V3 VDD_1v8 VDD:}V3 VDD_1v8
R255 1 R186 R254 1
N 10K 2.2k 10K
B (Gt R o (p
)o) VDD_3v3 3\ e 2 3\ e 2
4P-1.0mm TO Q6 Q7
— BSS138W BSS138W

4 QWIIC_SCL SOT-323-3 SOT-323-3

6 3 QWIIC_SD,
% N N

€255
=—100nF
10v

E D29 E D30

€0201

1
1

[TPD1E1B04DPY
pd

[TPD1E1B04DPY
»pd

i1l
[

Fig. 3.9: QWIIC connector for 12C modules

S>MCU_12C0_SCL[16]
5 >MCU_I2C0_SDA[16]

22

Chapter 3. Design and specifications

BeaglePlay

3.5.1 Buttons

Power, Reset and User buttons for turning board ON/OFF, resetting board, and boot selection or user assigned
control.

Table 3.1: BeaglePlay buttons

Power Reset User
Sw2
Sw1 SW1
i
L], i gz UTOMCU_PORZ[5,16] 2
2 = PWR_BTN[S] o = 4 o PWR_BTN[5]
s| s et sl s
Shierd T N — Shierd
= TSZBM-BN-PT-PF = == 523M-BN-PT = = UZEIRABAUGE =
ST CEET) = L4.7*W3.5%H1.85mm-90D L4.75W3.5+H1.85mm-90D
button2_3p_4d55x2d3x1d88mm button2_3p_4d55x2d3x1d88mm button2_3p_4d55x2d3x1d88mm
3.5.2 LEDs

Power and user LEDs for status and general purpose usage.

[19] CC1352_LED2 [1v >

[19] CC1352.LEDT [>

[13] LED_USR4 o>

[13] LED_USR3

=
[13] LED_USR2 o>

VDD_3v3

[13] LED_USR1

[13] LED_USRO

R201 R202 R203 R204 R205 R206 R236 R237 R238
2.2k 2.2k 2.2k 2.2k 2.2k 2.2k 2.2k 2.2k 2.2k
1% 1% 1% 1% 1% 1% 1% 1% 1%
R0402 R0402 R0402 R0402 R0402 R0402 R0402 R0402 R0402
LED8 LED9 LED10
LED3 LED4 LEDS LED6 LED7 Yellow Yellow !! Yellow LED11
Green Green Green Green Green 0402 0402 0402 Red
0402 0402 0402 Q 0402 Q 0402 % Q Q Q
G Yellow Yellow Yellow 0402
reen Green Green Green Green

Red
20mA

| 20mA ~f 20mA 20mA | 20mA ~f 20mA ~ 20mA 20mA ~ 20mA

2

\Qio

DMG1012T-7
R2392. 1@ s0T523
[1420] WLEN > Roaos " o\

Fig. 3.10: BeaglePlay LEDs

3.6 Wired and wireless connectivity

For internet connection or general connectivity between BeaglePlay and other devices.

3.6.1 Gigabit ethernet

The Realtek RTL8211F-CG is a highly integrated Ethernet transceiver that is compatible with 10Base-T,
100Base-TX, and 1000Base-T IEEE 802.3 standards. It provides all the necessary physical layer functions
to transmit and receive Ethernet packets over CAT.5 UTP cable. The RTL8211F(l)-CG uses state-of-the-art DSP
technology and an Analog Front End (AFE) to enable high-speed data transmission and reception over UTP cable.
Functions such as Crossover Detection & Auto-Correction, polarity correction, adaptive equalization, cross-talk
cancellation, echo cancellation, timing recovery, and error correction are implemented in the RTL8211F(l)-CG
to provide robust transmission and reception capabilities at 10Mbps, 100Mbps, or 1000Mbps.

3.6. Wired and wireless connectivity 23

BeaglePlay

PHYYDDIO

Voo 33 PHy voD3V3 PHYYDDIVD
JEE ovooss Avot0 rosoon,
PHY.¥DD1VO w07 VT oA = oo
L o8 oo sooss ez, T wore
R0402 % T T 0402 T3A T
. ovoors o
Lo | o cos 002
T T T o .
v T o Tov P ¥ X s oo 9% o | 95| s | awr | am
G | o | e | S =i S ==l i =19 oo on=roonF
P T v T o Tov T T T 10y
58 228 cg e Goaz | coor | 63v | comor | 63v | cozon | coron | coxon
wone = = g8 B33 B3 o
S o $8 =24 1 nd =
H g2 = =
§ 3 88§ == o o o
R263 3 = Pa
P
o
roao: g ouvasts 12 s A FE——— 2o i
o2 oIy 515 o
100_MD! MDIO 14 [0}
1116 MDIOO MOIOSE oG 1 voio PR .
11161 MDIOOMDC MDC MDIf1 15—t 4 o2+
woomor 2o it =
m RXDTTXDLY 24| RXDO/RXDLY. 6 mpp+
" LT —CE ot woigys [§——po 103+
- O o RoypLion ol ks
1. B2 R [S 0 o
[— woI i Toa
B0 27 v e o e
.11 S8 S L B (A AN)
wser wser__nasza Jano 2 o1 12 oz 2 o8 o Smroo L8
— 00 18 o Roaoz SHIELDT [
17 35 GBECLKO ~TP8 PHY_VDD1VO +
cuout ¢35 CBEAIO) 0 2a Ne
30 secouruiey 0 o 37
REG_OUT Z0x16mm’ 2 0A] o
g
rer 2 e B st 5 Ve e
en 8 °
2 wovcs ea ST 8 JUR1 fUoni0 Ut
36 Leporcrs,ext] S £ o o v veie
W LED1/CFG_LDOO LEDY/CFG. 1000 g 11 Groc
37 our/exT.cu ceonrcre 10on 1 H = = . Green
Lep2/crs Lot = £ PHY_OVDD3V Geon e
s L

LPIGOSTIHIINL
1]45_18p_21_23415_93x13_3MM

08
RTLB211F-VD-CG
QFN-40(5+3)

Fig. 3.11: Gigabit ethernet

3.6.2 Single pair ethernet

The DP83TD510E is an ultra-low power Ethernet physical layer transceiver compliant with the IEEE 802.3cg
10Base-T1L specification. The PHY has very low noise coupled receiver architecture enabling long cable reach
and very low power dissipation. The DP83TD510E has external MDI termination to support intrinsic safety
requirements. It interfaces with MAC layer through Mil, Reduced MIl (RMIl) , RGMII, and RMII low power 5-MHz
master mode. It also supports RMIl back-to-back mode for applications that require cable reach extension
beyond 2000 meters. It supports a 25MHz reference clock output to clock other modules on the system. The
DP83TD510E offers integrated cable diagnostic tools; built-in self- test, and loopback capabilities for ease of
design or debug

vsvssv

N our VDD_1V8
. T e Sonenn
033
E—— y [oVOD_1.0 CSTAO950RB-501 2
18 RX_DV_CRS_DV Cosoan] L] 4 52 [z ¢
RACIK 19 4 X P R10045, R1040f 5
RSPERXER 20 | RXCLKSOMHz RMILM - T+ R0402 ™ #0402 D s
RXER R |2 RX.P___ R1022K, i 1
SPETX 20 - R0402 ™
25 \x’u? R & RXN__ R1032K, 2 PIET58-0CNL
6] X0z " T Roi02 A RJ11_6P4C_1d27_21_15x13 8x13 3
10,16] MDIOO_MDC s ™ Ros02 T Roa0z 5%

RMII2 REF CLKT

e o B -
voD_1v8 2 1 L - ae
T Mot Lo RMILZ_REF_CLK2 R23100p RMII2_REF_CLK o
MDIo Y coioz
— PWDN_INT VDD_3v3
RO402 9 xo R9%0R o T
o R0402 5% 0402 VNV
RSN
Hoits % ! 3 st 1 s0Mpzn [0
5 ceor
apion [-§—SPl02
2 1 PAD Gpiot [22—CFOT
0121619 porzouT D2 ———
F9.10:12 - 2 4 OPESTDST0ERHBR
5910121619 ReseTsTAT: [——1 QFN-32(5%5)
speRsT 2 s oo 318
) oo 3v3
RBS2052071G
S00.523 s
200mA —=to0n¢
v 10v
com

e cLkouTon3)

Fig. 3.12: Single pair ethernet

24 Chapter 3. Design and specifications

BeaglePlay

3.6.3 WiFi 2.4G/5G

The WL18x7MOD is a Wi-Fi, dual-band, 2.4- and 5-GHz module solution with two antennas supporting industrial
temperature grade. The device is FCC, IC, ETSI/CE, and TELEC certified for AP (with DFS support) and client.
Tl offers drivers for high-level operating systems, such as Linux® and Android™. Additional drivers, such as
WinCE and RTOS, which includes QNX, Nucleus, ThreadX, and FreeRTOS, are supported through third parties.

C25610pbF

1
C04025pW o
32
073
TPD1E0BO4DPY
XISON(2) =
36v

15
= UFLR-SMT-1(10)
U-FL3P-SMD-2_6X2_6X1_OMM

1

C25710pbF

Cos025pY J I
3 2|
074
TPD1EOBO4DPY
X1SON(2) =
36V

VoD 1v8 VDD 3v3
usa
FB112 47 18
VBAT_IN_1 RF_ANT2
134 0402 ' L VBAT_IN RF_ANT1 32 VDD_1v8
FB212) ‘ El T
13A 0402 VION
50 7 WLAN_RS232_TX G
86 css 83 | caa %51 BTHCLRTS 1v8 GPIOT 26 AN W%n o
2.20F 100nF =—10uF=—100nF X5 BILHCLCTS 1v8 GPIO2 55
R AR R X2 BTHATX Tve Gpioa [2
o402 | Co201 | o603 | co201 X BTHCLRC1v8 SPioo % R23 QR4 QRS QR Q R
56 GPIOT0 PE 10K 10K 10K 10K 10K
BT_AUD_OUT 57 BTAUDIN GPiot) 1% 1% 1% 1% 1%
58 | BT.AUD_OUT GPIOT2 1= R0402 [RO402 | RO402 [RO402 | R0402
%25 BT AUD FSYNC w0
= %22+ BT AUD_CLK WLAN_EN |37 W] WLEN[14,21)
- ™4 BT_UART_DBG 43 BT UART DBG WLIRQ_TV8 1) WLIRQ[14]
ps QW TRRT DBG _UART
S e w10 cuo . [D wicuo
B en
. Ay sren wisoo_cik & <@ ek
161 WKUP_CLKOUTO [5>- o e ; 359 ex1_32¢ WL_SDI0_DO_1v8 [4F S WLD09)
Y X—557 RESERVED3 WL_SDIO_D1_1V8 [~ B WL_D1[9]
H ()72‘ RESERVED2 WL_SDIO_D2_1V8 73 [WL_D2[9]
i %—21{ RESERVED1 WL SDIO_D3.1V8 TS WLD3(9)
WITE07WODGIMOC

100P-133+13.4%2mm T R2z,
u‘“ 02

Fig. 3.13: WL1807MOD dual-band (2.4G/5G) WiFi

3.6.4 BLE & SubGHz

The SimpleLink™ CC1352P7 device is a multiprotocol and multi-band Sub-1 GHz and 2.4-GHz wireless micro-
controller (MCU) supporting Thread, Zigbee®, Bluetooth® 5.2 Low Energy, IEEE 802.15.4g, IPv6-enabled smart
objects (6LOWPAN), mioty®, Wi-SUN®, proprietary systems, including the Tl 15.4-Stack (Sub-1 GHz and 2.4
GHz), and concurrent multiprotocol through a Dynamic Multiprotocol Manager (DMM) driver. The CC1352P7 is
based on an Arm® Cortex® M4F main processor and optimized for low-power wireless communication and ad-
vanced sensing in grid infrastructure, building automation, retail automation, personal electronics and medical
applications.

3.7 Memory, Media and Data storage

3.7.1 DDR4
3.7.2 eMMC/SD
3.7.3 microSD Card

3.7.4 Board EEPROM
3.8 Multimedia l/O

3.8.1 HDMI

3.7. Memory, Media and Data storage 25

BeaglePlay

RF Core

Main CPU

Arm® Cortex®-M4F
Processor

Digital PLL

DSP Modem

Arm®

144KB
Processor

SRAM
with Parity

General Hardware Peripherals and Modules Sensor Interface

I°C and I’S 4x 32-bit Timers ULP Sensor Controller

2x UART 2x 881 (SPI) 8-bit DAC

32 ch. yDMA Watchdog Timer 12-bit ADC, 200 ksls

31 GPIOs TRNG 2x Low-Power Com parator

Temperature and SPI4’C Digital Sensor IF

AES-256, SHA2-512 Battery Monitor

ECC, RSA RTC Constant Current Source

Time-to-Digital Converter

4KB SRAM

Fig. 3.14: CC1352P7 block diagram

e s
Wiy 12
Took 5 urasuTi)
I e v & RS e
e ™ o s | Gty !

Ry s o 1 e T
e vy voos2 |2 J
Jeacon e V0%
voore £y P hos [vobse 2w sub i re— -
VoDs 5C0C i) L
e = = SNz =
— ococsw oo [) xisg
Lo G mzzoraNsRaLTOR VODRRE - o
e =i s . e - oo Hg -4
o 2acH e =
Gron | foeos Soxer 2achre P
L pr— e s 43 e TER00%
L ST GRS I006F .15 v 25#H085mm
= FrRRcia o
DB, = =
Taban = 5
RX TX [—RATX
bouet e [
[o
e
ars
»
@ e urasTI0)
L e £ ULRLIPSUD-2.6%2.6X1 O
;
32.768KkHz RFC
<15x0smm
o anisxom

S
o7
co402 NC

aam
20x1.6mm

o 3v3 M3V 0

<Y
3 90F 2504

oRF
£
eos1208,) |
Vi o
BuERG121END 5o
002 25 Sov Sama
o | s o oo | w2 @ S0 0 oz
S Sa00F ==1o0n ==1o0ne ==1o0nF =oor ==toone
V' T 0 Tov oy oy
o | oo

v] v

Cosoa | cosos
= L 20 dBm BOM:
LayoutNot: FCC: 890-930 MHz, L52 = 27nH
ETSI: 863-889 MHz, [52 = 18nH

Layout Note:
Place C37 and C38 close to pin 34,
Place C39, C40, Ca1 close to pin 13, pi 22, pinds. Place these capaitors close to pinds, pinds.

10V 10 107
coa0n o201 | cozor

F——

Fig. 3.15: CC1352P7 Bluetooth Low Energy (BLW) and SubGHz connectivity

26 Chapter 3. Design and specifications

BeaglePlay

VDD_1V2 VDD_1V2 DDR_VPP
DDR_VREFCA
U2 e P o e 4 i Y N J
DDR_AQ P33 A0 0000000000 00000000 aa Qo [-&2 DDR_DQO
DDR_AT P7 0000000000 ARO0AAAAAAA 24 F F DDR_DQT
DDR_AZ R3 A1l >S>5>5>5>5>5>>>> poooooooono > % DQ1 A3 DDR DQ2
DDR A3 7 A2 z======>>> & DQ2 7 DDR_DQ3
DDR A% 37 A3 > DQ3 2 DDR DQ4
DDR A5 pg ¥ A4 DQ4 g DDR DQ5
DDR A6 p2 | AS DQ5 3 DDR DQ6
DDR A7 Rg | A6 DQ6 17 DDR DQ7
DDR A8 R2 | A7 DQ7 [~a3 DDR DQ8
DDR_AQ R7 1| A8 DQ8 g DDR DQQ
—m’ A9 DQ9 c3 DDR_DQT0
—DORATT 12| AI0/AP bQ10 7 DDR_DQT]
—m’ A11 DQ11 2 DDR_DQT2
TDDRATZ 18" AI2/BCN bQ12 —¢Fg DDR_DQ13
A13 DQ13 53 DORDQTZ
DDR_A14_WEn 12 DQ14 57 DDR_DQT5
=ATS g | WEN/A14 DQ15
DDR_AT6_RAS 18 | CAS_N/A15 B7 DDR_UDQS_P
RAS_N/A16 UDQS_T 47 DDR_UDQS N
DDR_BAO N2 uUDQS_C
DDR_BAT Ng | BAO G3 DDR_LDQS_P
BA1 LDQS T /3 DDR_LDQS N
DDR_BGO M2 LDQS_C
BGO E2 DDR_UDM
DDR_CLKP K7 NF/UDM_N/UDBI_N
DDR_CLKN kg | CK.T E7 DDR_LDM
K C NF/LDM_N/LDBI_N
DDR_CKE DDR_ALERTN
= K2 | ke ALERT N[22 =
DDR_ODT K3 F9 R1240
opT zQ R RN
DDR_PARITY T3 —l—:
PAR -
DDR_TEN
= N9 | ey
DDR_CSn L7
DDR_ACTR ;3| N Joqegegedededegodedes 17 P11
DDR_RESET# p1 | ACTN QAURBRREREE RAARANAR9A9 NFNC ———0
RESET_N SS5>55555> 553353353>5353353>>>
ecoit SaR2BEr| YLopBEREER
FBGA-96
Fig. 3.16: DDR4 Memory
Vo118
W o ow Swa Swm omo gmi omz oma Swa
Bax$ BocS oS BacS Box$ DS HinS 2 TS e
Roaa | Roaoz | Ros02 | Roaoa | Rz | Roaoz | Roaoa | Rbdoz| Roaoz| R0i02 eMMC
i oo
MMCO_CLK AB1 EMMC_CLK 31
MMCo weo o (A48 BicE? b v L8 o)
PWrGrp:VDDSHV4 ng:gﬁg " ERVC & oz veers 2 Cosarh
" MCo DA 267 il s ohra vec o [0 ceriog
NGO DT F202 e B eN veexo 1 cosony
e B e coaor
MMCO_CMD v3 EMMC_CMD ws | vﬁpJTcmmﬂv
MMCE T a— L N
PrGIDDDSHVS N | — o6 RESETSTAT: [e wecana | oo
T8V MMC1_DAT3 == vecqps |22 c@c
nmct_cvp 22! e e eMmCRST [2—j— 4 Rt vczorvs] E%ﬂ
- €02071
GENERAL mMc1_spcp |21 GPI01.48 SD.CO [10,11,12,16,19] PORz.OUT a7 1 %‘iv
PWIGrp:VDDSHVO MuICT_sowe SD_VOLT SEL(S) fos20s30me o o Ris =
o sonsas 520S ok
-1 R e
PrGrpRgsive Mo O i sgSess SogfS
MMC2_CMD WL_cMD(z0] 299989 94998 e KO
MMC2.SDCD A23 GPIO0_71 DGE?"‘? Bgﬁ:ﬁ ‘EIVFMEIgE\!‘GSZ—TBZQ—PZQB
MMz sowe |-B23 GPI00_72 - |
bgad25.0d5_13x13mm AMG2X 10K
e I L L
Voice

Fig. 3.17: eMMC/SD storage

3.8.

Multimedia 1/0

27

BeaglePlay

03

59.10,11,12,16,19)

[5,13]
[5,13]

na17 rc2sc
1417 2C2S0A
04 HOMLINT
14 VoUTo D16
14}
1a]
19
14)
14)
14
18]
14

MCASP1_AXR3

MICRO_SD_ST_TF_003A_16_1x14_5mm

Rdmi19p_16155.23_1x7_7x16_4mm

wo.so
VDD_3V3 T
w21 W Sws Qws Wy ws
voo.3v3 Tk Tk Stk ST e ST
I RS RSt Lo
Rz [Row2 [owr [Rosne R2 [Ao v
00 L
R60 oD DAAZ 33
o n e &
I :
13" W vour e 7o
R T s .
so_pwReN D524 N aftx s0.00 5
SD_DT 0
5 , Bom
RESETSTATz - [WD—527 CDN ou
RE520530T1G N . o N o L N ST ol
s H S S IR N - "E
§}§mx A &P & & & 5
H SXTEETC X EXEE T o
Bz d A % %X % © o T how
é &V é é é é é é 0402 0201 0201
12C0_SDA SDA 0
10V 1%
0
1%
vsvsv
voo.303
ossRs2053071G
L2is0n__1o0ma
nae \ ¥
N
R B
5 S
o — RS
e ¥ Risoz | Rz
u K ompa
eser var (32 v 4] [s]
eson Tam P oomh vow -
% » mop ¥ S piaris
e 33| INT DA g
vouto pek st e
—vounorak s o, op
vou: XM HDMI_TXO- 5|
VOU! T 0o ADMITXCE
T % e
VOU: 02 ™M HDMI_TXC. |
v | e i P prines
2 FfEAAN
3 o 16 HDMI_DSCL 5
- % oocscy [—
T % S5k .
5 08 DVI+5V |
D10 09 14 il APD
o i o o
UT0_DTZ o1l Green REXT
1013 D12 VDD_3v3 ~
Yoo 813 s o . 4d
—— ot 55 0 080 L 057 L 0
Di; 1% ESDPSA0402V05.
16 Rosoz Sior [% &
o v EV S)
oig 018V -
A - i R
53 owooss
o3
5 veess =
88
vouosne 6 e
BT nene
0 —
—WOUTODE _ 6z] VoD12.8 &,
IVDD1256 56 DMIAVCC
= 7 cmeu ovoora | 2 gy
3
B2 i s etz (2 T T 1 CTmZaE
5 8 i)
[1252 PVCC12
S 21 12sy/seoiF l i i iz “l
ovoo,s
R 2 e oo | aw Jos |on |an |an | an s | ou
ENTEST 2 ovon_34 1000F S=T0uF =1nF 1000F ==10uF =100 ==T0uF 1000F ==10uF
“ 10v 63V 16V 10v 63V 10v 63V 10v 6.3V
wse T " Wi | Gie | Shor | Cooon | Shox | Sovor | Coaoe Saon | ko2
T 5 q
I 1
o

Fig. 3.20:

HDMI output

28

Chapter 3. Design and specifications

BeaglePlay

3.8.2

OLDI

9|
uiL -
6 oLDI0 A0 P (-
OLDI0_AOP o SToS 2 2
OLDI OLDI0_AON 3
AB4 OLDIO_A1_P 4
PwWrGrp:VDDA_1P8_OLDI OLDIO AP [~3p3 OLDI_ATN H
OLDIO_AIN 6
A8 OLDIO_A2 P 7
oLoio Az |-og IO AT 8
OLDI0 AN 9
AA7 OLDIO_A3 P 10
OLDIO_A3P |3gg TDI0_A3_N n
OLDIO_A3N 12
ACS OLDIO_A4_P 13
OLDI0 AdP | -he OO AEN 12
OLDIO_AGN 15
OLDI0_AS_P 1
OLDI0_ASP [APE AT
OLDIO_ASN —
oLDI0 A6 P
OLDIO_A6P 2257 OLDI0_AG |
OLDIO_A6N =
oLbIo A7 P
oLDI0 A7P AR e 23
OLDIO_A7N — 24
OLDIO_CLKO_P 25
OLDIO_CLKOP OLDI0_CTRO_ N 2
OLDIO_CLKON 27
OLDIO_CLK1_P 28
OLDIO_CLK1P OLDI0_CIKT_N 2
OLDI0_CLKIN CIRT 2
31
5425 005 13x13mm e 13 sLeN3vs [& 3
[13] L PWM 3v3 [33
(3] MSTRST3V3 [w 34
141 TPINT V8 Sot 35
f2ty | BOIon TraTs]
0214 s < s B
-
Vsvs sV » 8
FPC 40pin-0.5mm_|
5
fpcd0_0d5_25 4x5_psxamm
100nF ==10uF
10V 10V
o201 | coso3
3.8.3 CsSI
g
U1k CAM_DO_N 1
Acis 100,
CSIORXPO [agTx CAVDOF 2
cst CSI0RXNO H
AE14 CAM_D1_N 4
PWrGrp:VDDA_1P8_CSIRX CSI0_RXP1 RO AW DT P H
CSI0 RXN1 5
AE13 CAM_CK N 7
CSI0_RXP2 TAM _CK_P. 8
csmor [0 ‘ — H
AC13 CAM_D2 N 10
csio Rxna (212 ‘ D2 n
AE1S CAM_D3 N 13
(CSI0_RXCLKN AD15 — 15
16
CSI0.ATBLOH (a3 03 Csio.GRioT - Sy RPLNC 7
CSIOATB 1 H [——X o3 Cslo_GPI02 e R0402 5% 18
19
csio RxrcaLs aroE b
5gad25_0d5_T3x13mm AMG2X 2 .
BGA425 VDD_1v8 VDD_3v3 VDD_1v8 VDD _3v3 2
o T
8| Fpc22p 0.5mm
VoD 3v3
R233 I RI69 S R232 I R250 =
22k 10K 22k ok
1% 1% 9% 1% 259
RO402 RO402 | RO402 RO402 100nF
2 (BT)S :(HT)s o
Qg " coz01
B55138W B55138W
(16 WKUP_12€0_SCL < SOT323:3 s0T-323-3

3.9

3.9.1
3.9.2
3.9.3

3.9.4

3.10

[16] WKUP12C0_SDA

Fig. 3.22: CSI camera interface

RTC & Debug

RTC
UART Debug Port
AM62x JTAG & TagConnect

CC1352 JTAG & TagConnect

Mechanical Specifications

3.9. RTC & Debug

29

BeaglePlay

vDD_3Vv3 VDD_3V3

- C261DNR
R162 C264 C04025py
10K 100nF X7
1% 10V u18 2.768kHz)
R0402 | C0201 2x1.5x0.9mm
— 8 1 —
- VCC X1 -
R1630R, 7 — 2 C265DN#R
[131 RTCINT <eD—pm2es 5% T2C0SCL 6 | SQW/INT X2 I3 C04025py
T2C0_SDA 5 SCL Vbackup 2
SDA GND —_I_
BQ32002 =
8-SOIC(3.9mm)
>
=%
a
<
o
o
|
o
a
[=
Fig. 3.23: Real Time Clock (RTC)
VDD_3V3
Layout Note:
Add Silkscreen:
VDD_3v3
RB520S30T1G Pin1: GND
C55100hf R70 Pin2: RXD
€02011pY SOD-523 10K Pin3: TXD I6
u10 200mA 1%
8 — 1 30v R0402 1
SHvcc TOE 5 DEBUG_RXD 7|
[13] UARTORRXD <out g f\?E 12¢ i X DEBUG_TXD R
[13] UARTO_TXD IN 2A GND > N > N
SN74LVC2G241DCUR — & & = Header 1x32.54mn
8-VFSOP S I X D10 header3p_2d54_dir
o o
i) W
o o
a | o |
= r— '____
Fig. 3.24: UART debug port
VDD_1V8 VDD_1Vv8
U1B
MCU GENERAL o |-Ef3——oeavor
EMU1 _LCZGO
PwrGrp:VDDSHV_MCU L A10 SOC_TCK 100nF
1.8V TCKqATT —___socTor R154 R155 10V
TOlI"p12 —_soctoo 10K 10K 0201
TDO "B7q SOCTMS 1% 1% =
TREANS B10 SOC_TRSTZ R0402 [RO402 : o soc e
bgad25_0d5_13x13mm AMG2X SOC.TMS 2|} [_ocTRTE
BGA425 3 8 SOC.TDI
SOCTCK [413 8[7 —SOCEMUD
5 g g 6 OC_TDO
J19 R158
= DNP 10K
DNP 1%
R0402
Fig. 3.25: AM62 JTAG debug port and TagConnect interface
U9B
¥ oi0s DIO_18 Ag MCU_3V3
DIO_6 DIO_19 [,
P14 gg’g gg’g? 32 | 0 CC1352 RESET N
o4 oS DI0 22 [22 CC1352.TMS 2 ; 13 5
DIO_10 DIO 23 37 15 L] PSS N E R & SR
DIO 11 DIO 24 ouT, X -
[13] UART6_TXD 'Ni R12008 2 fér DIO_12 DIO_25 ag [UrSCC1352_LED2[21] _4‘5‘ Zﬁ CC1352_TDO
[131 UART6_RXD <out é% DIO_13 DIO 26 [4g L
DIO 14 DIO_27 |77
1131 cc1352.800T [TCT352.T00 267 DIO_15 DIO_28 73 DI029_RF_PA = Dnep
- 27 | DIo_16 DIO 29 73 DIO30_RF SUBTG DNP
DIO_17 DIO_30
CCT352P7
QFN-48

Fig. 3.26: CC1352 JTAG debug port and TagConnect interface

30

Chapter 3. Design and specifications

BeaglePlay

3.10.1 Dimensions & Weight

Table 3.2: Dimensions & weight

Parameter Value

Size 82.5x80x20mm
Max heigh 20mm

PCB Size 80x80mm

PCB Layers 8 layers

PCB Thickness 1.6mm

RoHS compliant Yes

Weight 55.3g

80.0
74.3

= OOo0oooo

I gE

E -

< ﬁ]

O o oo S
g 8 sOOooooo] g
0 ooo o i

aeoaon

oo oo

oo oo

Fig. 3.27: BeaglePlay board dimensions

3.10. Mechanical Specifications 31

BeaglePlay

16.4

1.6

Fig. 3.28: BeaglePlay board side dimensions

32 Chapter 3. Design and specifications

Chapter 4

Expansion

Todo: Add information on building expansion hardware for BeaglePlay.

4.1 mikroBUS

The mikroBUS header provides several GPIO pins as well as UART, 12C, SPI, PWM and an Analog Input.

By default, the port is controlled by a mikroBUS driver that helps with auto-detecting MikroE Click Board that
feature ClickID. This does however mean that if you want to manually control the port, you may need to first
disable the driver.

To disable the driver, do the following - TODO

4.2 Grove

The Grove port on BeaglePlay exposes one of the SoC I12C Ports as well as an analog input.

It maps directly in linux as /dev/I2C-TODO or as the following alias /dev/play/grove

4.3 QWIIC

The QWIIC port on BeaglePlay exposes one of the SoC I12C Ports.

It maps directly in linux as /dev/I2C-2 or as the following alias /dev/play/qwiic

4.4 CSI

The AM62x SoC (and by extension BeaglePlay) does not feature on-board ISP (Image Signal Processor) hard-
ware, and as such, Raw-Bayer CSI Sensors must be pre-processed into normal images by the A53 cores.

To avoid performance penalties related to the approach above, it is recommended to use a sensor with a built-in
ISP, such as the OV5640 which is supported out of box.

The PCam5C from Digilent is one CSI camera that features this sensor.

33

https://www.mikroe.com/clickid
https://digilent.com/shop/pcam-5c-5-mp-fixed-focus-color-camera-module/

BeaglePlay

Note: Since BeaglePlay uses a 22-pin CSI connector, a 15 pin to 22 pin CSl adapter may also be required such
as this one

Once installed, there are some software changes required to load the device driver at boot for the OV5640.
We will need to modify the following file: /boot/firmware/extlinux/extlinux.conf

We will add the following line to load the OV5640 DTBO:

fdtoverlays /overlays/k3—-am625-beagleplay-csi2—-ov5640.dtbo

Then you can reboot: sudo reboot

Camera should now work, you can use mplayer to test.
sudo apt-get install -y mplayer

mplayer tv: // —-tv driver=v41l2:device=/dev/
—videoO:width=640:height=480:fps=30:outfmt=yuy2

4.5 OLDI

BeaglePlay brings out two OLDI (LVDS) channels, each with up to four data lanes and one clock lane to sup-
port 21/28-bit serialized RGB pixel data and synchronization transmissions. The first port, OLDIO, consists of
OLDIO_A0-3/CLKO and corresponds to odd pixels, while the second port, OLDI1, consists of OLDIO_A4-7/CLK1
and corresponds to even pixels.

It is pin compatible with the following two displays from Lincoln Technology Solutions:
Both displays have the following features and only differ in bezzle type:
* Resolution - 1920x1200 (16:10)
* LCD Size (diagonal) - 10.1"
* Refresh Rate - 60Hz
* Brightness - 1000nit
* Pannel Type - Edge-lit IPS
* Touch Enabled - Yes, Capacitive
e Connector - 40 pin FFC ribbon cable
A “Flush Coverglass” Version A “Oversized Cover Glass” Version - similar in style to a Tablet Display
To enable OLDI display support, modify the following file: /boot/firmware/extlinux/extlinux.conf

Then, add the following line to load the Lincoln LCD185 OLDI DTBO:

fdtoverlays /overlays/k3—-am625-beagleplay-1t-1cd185.dtbo

Your /boot/firmware/extlinux/extlinux.conf file should look something like this:

label Linux eMMC

kernel /Image

append root=/dev/mmcblk0p2 ro rootfstype=extd4d rootwait net.ifnames=0.
—systemd.unified_cgroup_hierarchy=false quiet

fdtdir /

fdtoverlays /overlays/k3—-am625-beagleplay-1t—-1cd185.dtbo

initrd /initrd.img

34 Chapter 4. Expansion

https://www.uctronics.com/arducam-15-pin-1-0mm-pitch-to-22-pin-0-5mm-camera-cable-for-raspberry-pi-zero-version-1-3-specific-pack-of-2.html
https://www.uctronics.com/arducam-15-pin-1-0mm-pitch-to-22-pin-0-5mm-camera-cable-for-raspberry-pi-zero-version-1-3-specific-pack-of-2.html
https://www.digikey.com/en/products/detail/lincoln-technology-solutions/LCDK185-101CTL1ARNTTR1-0/20485318?s=N4IgTCBcDaIDIGEAiBpAjADgKwgLoF8g
https://www.digikey.com/en/products/detail/lincoln-technology-solutions/LCDK217-101CTL1ARNTTR1-0/20485319?s=N4IgTCBcDaIDIGEAiBpMBGA7CAugXyA

Chapter 5

Demos and tutorials

5.1 Using Serial Console

To see the board boot log and access your BeaglePlay’s console you can connect a USB-UART cable as depicted
in the image below and use applications like t 10 to access the console.

RTC-BAT
_ CR1220

USB - UART

Bridge

58 B
wzz f r.’m",“‘ i
Shgl ~ |

USB?2 .0
-, —

Transmit (T)
Recieve (RX)

Ground (GND) Ground (GND)

Fig. 5.1: Serial debug (USB-UART) cable connection.

If you are using Linux your USB to UART converter may appear as /dev/ttyUSB. It will be different for Mac
and Windows operating systems.

[lorforlinux@fedora ~] $ tio /dev/ttyUSBO
tio v2.5

Press ctrl-t g to quit

Connected

Tip: For more information on USB to UART cables, you can checkout serial-debug-cables section.

35

BeaglePlay

5.2 Connect WiFi

Note: A common issue experienced by users when connecting to Wireless networks are network names that
include special characters such as spaces, apostrophes etc, this may make connecting to your network more
difficult. It is thus recommended to rename your Wireless AP to something simpler. For Example - renaming
“Boris’s Wireless Network” to “BorisNet”. This avoids having to add special “escape” characters in the name.
This shows up especially if you try connecting to iPhone/iOS HotSpots, where the network name is the device
name, which by default is something like “Dan’s iPhone”. Also see this potential solution..

If you have a monitor and keyboard/mouse combo connected, the easiest way is to use wpa gui.
Alternatively, you can use wpa cli instructions over a shell connection through:

e The serial console,

* VSCode or ssh over a USB network connection,

* VSCode or ssh over an Ethernet connection,

* VSCode or ssh over BeaglePlay WiFi access point, or

* A local Terminal Emulator session.

Once you have a shell connection, follow the wpa_cli instructions.

5.2.1 BeaglePlay WiFi Access Point

Running the default image, your BeaglePlay should be hosting a WiFi access point with the SSID “BeaglePlay-
XXXX”, where XXXX is selected based on a hardware identifier on your board to try to increase the chances it
will be unique.

Tip: The “XXXX" will be a combination of numbers and the letters A through F.

Note: At some point, we plan to introduce a captive portal design that will enable using your smartphone to
provide BeaglePlay local WiFi login information. For now, you’ll need to use a computer and

Step 1. Connect to BeaglePlay-XXXX

Tip: The password is either “BeaglePlay” or “BeagleBone” and the IP address will be 192.168.8.1.

Whatever your computer provides as a mechanism for searching for WiFi access points and connecting to them,
just use that. You will want to have DHCP enabled, but that is the typical default. Connect to the “BeaglePlay-
XXXX" access point and use the password “BeaglePlay” or “BeagleBone”.

Note: The configuration for the access point is in the file system at /etc/hostapd/hostapd. conf.

Once your are connected to the access point, BeaglePlay should provide your computer an IP address and use
192.168.8.1 for itself. It should also be broadcasting the mDNS name “beagleplay.local”.

36 Chapter 5. Demos and tutorials

https://unix.stackexchange.com/questions/679862/wpa-supplicant-conf-escaping-characters/

BeaglePlay

Step 2. Browse to 192.168.8.1

Once you have connected to the access point, you can simply open VSCode by browsing to https://192.168.8.1:
3000.

Within VSCode, you can press “CTRL-‘" to open a terminal session to get access to a shell connection.

You could also choose to ssh into your board via ssh debian@192.168.8.1 and use the password temppwd.

Important: Once logged in, you should change the default password using the passwd command.

5.2.2 wpa_gui

Simplest way to connect to WiFi is to use wpa_ gui tool pre-installed on your BeaglePlay. Follow simple steps
below to connect to any WiFi access point.
Step 1: Starting wpa_gui

You can start wpa_gui either from Applications > Internet > wpa_gui ordouble click on the
wpa_gui desktop application shortcut.

Applications = .,) Sat 4Feb, 07:30 Beagle User

@ Run Program...
Terminal Emulator
B File Manager

(- Mail Reader

@ Web Browser

fl Settings

128 Accessories

14 Multimedia
@ System
' About Xfce
® Log Out.

Fig. 5.2: Starting wpa_gui from Applications > Internet > wpa_gui

Step 2: Understanding wpa_gui interface

Let's see the wpa_gui interface in detail,
1. Adapter is the WiFi interface device, it should be wlanO (on-board WiFi) by default.
2. Network shows the WiFi access point SSID if you are connected to that network.

3. Current Status tab shows you network information if you are connected to any network.

5.2. Connect WiFi 37

https://192.168.8.1:3000
https://192.168.8.1:3000

BeaglePlay

¥ Applications = %) Sat 4Feb, 03:23 Beagle User

Fig. 5.3: Starting wpa_gui from Desktop application shortcut

* Click on Connect to connect if not automatically done.
* Click on Disconnect to disconnect/reset the connection.
* Click on Scan to scan nearby WiFi access points.

4. Manage Network tab shows you all the saved networks and options to manage those.

Step 3: Scanning & Connecting to WiFi access points
To scan the WiFi access points around you, just click on Scan button available under wpa_gui > Current
Status > Scan.
A new window will open up with,
1. SSID (WiFi name)
2. BSSID
3. Frequency
4. Signal strength
5. flags

Now, you just have to double click on the Network you want to connect to as shown below.

Note: SSIDs and BSSIDs are not fully visible in screenshot below but you can change the column length to
see the WiFi names better.

Final step is to type your WiFi access point password under PSK input field and click on Add (as shown in
screenshot below) which will automatically connect your board to WiFi (if password is correct).

38 Chapter 5. Demos and tutorials

BeaglePlay

3 Applications = @ wpa_gui

% Applications - (@ wpa_gui

wpa_gui

File Network Help

Adapter: |wlano -
Network: [-]

Current Status | Manage Networks || |»

Status: Inactive
Last message:
Authentication:
Encryption:

SSID:

BSSID:

IP address:

| Connect | Disconnect|| Scan

Fig. 5.4: wpa_gui interface

wpa_gui
File Network Help

Adapter: |wiano
Network: [

Current Status | Manage Networks || |+

Status: Inactive
Last message:
Authentication:
Encryption:

SSID:

BSSID:

IP address:

Connect| Disconnect] | sean |

Fig. 5.5: Scanning WiFi access points

#) Sat 4Feb, 03:23 Beagle User

W) Sat 4Feb,03:24 Beagle User

5.2. Connect WiFi

39

BeaglePlay

Scan results

S$-BSSID frequency signal flags
2: -31dBm

| [WPA-PSK-CCMP][WPA2-PSK-CCMP][ESS]
| [WPA-PSK-TKIP][WPA2-PSK-CCMP][ESS]
| [WPA-PSK-CCMP+TKIPJ[WPA2-PSK+FT...

wpa_gui
File Network Help

Adapter: [wiano
Network: [-]

m Manage Networks H E

Status: Inactive
Last message:
Authentication:
Encryption:

SSID:

BSSID:

IP address:

| Connect | |Disconnect|| Scan |

Fig. 5.6: Selecting WiFi access point

% Applications = g, wpa_gui I W) Sat 4 Feb, 07:26 Beagle User

flags
| [WPA-PSK-CCMP+TKIPI[WPA2-PSK-C...
| [WPA2-PSK+FT/PSK-CCMP][ESS]

Upside Down Labs -2.4G | [WPA-PSK-CCMP+TKIPJ[WPA2-PSK-C...

SSID |Upside Down Labs -2.4G

Authentication | WPA2-Personal (PSK)

Encryption |CCMP

PSK [0

EAPmethod |1/ 4 | [WPA-PSK-CCMP][WPS][ESS]

N 7 |[WPA2-PSK-CCMPIIWPS][ESS]

Identity (Lbruinan nets Assan- "

Password
Wpasou CA certificate |

WEP keys

wpa_gui
File Network Help

Adapter: |wlano

O key
O key

\
1| Network: |0: Upside Down Labs 5G
\

‘ Status: Completed (station)
Optional Settings Last message: - Connection to 64:fb:92:76:al:ee comple
e o Authentication: WPA2-PSK
IDstring | J ecerity [0) Encryption: CCMP + TKIP
Inner auth | SSID: Upside Down Labs 5G
BSSID: 64:1b:92:76:al:ee
IPaddress: 192.168.1.39

Current Status | Manage Networks = WPS |

Connect | |Disconnect ||

Fig. 5.7: Connecting to WiFi access point

40 Chapter 5. Demos and tutorials

BeaglePlay

5.2.3 wpa_cli (shell)

In commands shown below, swap out “68:ff:7b:03:0a:8a” and “mypassword” with your network BSSID and
password, respectively.

debian@BeaglePlay:~$ wpa_cli scan

Selected interface 'wlanO'

OK

debian@BeaglePlay:~$ wpa_cli scan_results

Selected interface 'wlanO'

bssid / frequency / signal level / flags / ssid

68:ff:7b:03:0a:8a 5805 -49 [WPA2-PSK-CCMP] [WPS] [ESS] mywifi

debian@BeaglePlay:~$ wpa_cli add_network

Selected interface 'wlanO'

1

debian@BeaglePlay:~$ wpa_cli set_network 1 bssid 68:ff:7b:03:0a:8a

Selected interface 'wlanO'

OK

debian@BeaglePlay:~$ wpa_cli set_network 1 psk '"mypassword”’

Selected interface 'wlanO'

OK

debian@BeaglePlay:~$ wpa_cli enable_network 1

Selected interface 'wlanO'

OK

debian@BeaglePlay:~$ ifconfig wlanO

wlanO: flags=4163<UP,BROADCAST, RUNNING, MULTICAST> mtu 1500
inet 192.168.0.245 netmask 255.255.255.0 Dbroadcast 192.168.0.255
inet6 fe80::6e30:2aff:fe29:757d prefixlen 64 scopeid 0x20<link>
inet6 2601:408:c083:b6c0::e074 prefixlen 128 scopeid 0x0<global>
ether 6c¢:30:2a:29:75:7d txqueuelen 1000 (Ethernet)
RX packets 985 Dbytes 144667 (141.2 KiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 52 bytes 10826 (10.5 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions O

Important: The single quotes around the double quotes are needed to make sure the double quotes are
given to wpa cli instructions. It expects to see them.

Note: For more information about wpa cli instructions, see https://wl.fi/wpa supplicant/

To make these changes persistent, you need to edit /etc/wpa_supplicant/wpa_supplicant-wlan0.conf. This is
described in wpa_cli (XFCE) section.

5.2.4 wpa_cli (XFCE)

Another way of connecting to a WiFi access point is to edit the wpa_supplicant configuration file.

Step 1: Open up terminal

Open up a terminal window either from Applications > Terminal Emulator Orfrom Task Manager.

Step 2: Setup credentials

To setup credentials of your WiFi access point follow these steps,

5.2. Connect WiFi 41

https://w1.fi/wpa_supplicant/

BeaglePlay

) Mon 6 Feb, 20:07 Beagle User

3¢ Applications *

(4 Mail Reader
@ web Browser
%8 Settings

128 Accessories
@ Internet

14 Multimedia
@ System

1 About Xfce
© Log Out

Fig. 5.8: Open terminal from Applications > Terminal Emulator

¥ Applications = %) Mon 6 Feb, 20:07 Beagle User

() Terminal Emulator
=] yset mand lin

.H@lglﬁ

Fig. 5.9: Open terminal from Task Manager

42 Chapter 5. Demos and tutorials

BeaglePlay

1. Execute sudo nano /etc/wpa_supplicant/wpa_supplicant-wlanO.conf, which
will open up wpa_supplicant-wlanO.conf inside nano (terminal based) text editor. 1. Edit
wpa_supplicant-wlanO.conf to add SSID (WiFi name) & PSK (WiFi password) of your WiFi access
point.

network={
ssid="WiFi Name”
psk="WiFi Password”

}
1. Now save the details using ctrl + O then enter.
2. To exit out of the nano text editor use ctrl + X.
¢ Applications - B Terminal - debian@Bea... = |) Mon 6 Feb, 20:09 Beagle User

| |

inal - debian@BeaglePlay: ~

debian@Beaglel o /etc/wpa_supplicant/wpa_supplicant-wland.conf
fisudol password for debian: il

elboard.org

EEEDx

Fig. 5.10: Run: $ sudo nano /etc/wpa_supplicant/wpa_supplicant-wlan0.conf

The WiFi doesn’t automatically connect to your WiFi access point after you add the credentials to
wpa_supplicant-wlanO.conf.

1. To connect you can either execute sudo wpa_cli —-i wlanO reconfigure
2. Or Reboot your device by executing reboot inside your terminal window.
3. Execute ping 8.8.8.8 to check your connection. Use ctrl + C to quit.

debian@BeaglePlay:~$ ping 8.8.8.8

PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.

64 bytes from 8.8.8.8: icmp_seqg=1 ttl=118 time=5.83 ms
64 bytes from 8.8.8.8: icmp_seqg=2 ttl=118 time=7.27 ms
64 bytes from 8.8.8.8: icmp_seqg=3 ttl=118 time=5.30 ms
64 bytes from 8.8.8.8: icmp_seg=4 ttl=118 time=5.28 ms
64 bytes from 8.8.8.8: icmp_seg=5 ttl=118 time=9.04 ms
64 bytes from 8.8.8.8: icmp_seqg=6 ttl=118 time=7.52 ms

(continues on next page)

5.2. Connect WiFi 43

BeaglePlay

% Applications : | Terminal - deblan@Bea. [= W) Mon 6 Feb, 20:17 Beagle User

I>-] Terminal - debian@BeaglePlay: ~ RO

Edit View Terminal Tabs Help

7etc/wpa supplicant/wpa supplicant-wland.conf *
IR=/run/wpa_supplicant GROUP=netdev

network={
ssid="Upside Down Labs 56"
psk="beagleboard.orgll
proto=RSN
key_mgmt=HPA-PSK
irwise=CCMP

mesh_fwding=1

Q§ Help K write out g Where Is Q@ Cut 8 Execute Location
[Exit @i Read File @ Replace @l Paste @ Justify @l Go To Line @
— —

Fig. 5.11: Add SSID and PSK

3 Applications = B Terminal - debian@Bea. = %) Mon 6 Feb, 20:12 Beagle User

-] Terminal - debian@BeaglePlay: ~ ~A-Dx
File Edit View Terminal Tabs Help

GNU nano 5.4 Jetc/wpa supplicant/wpa supplicant-wlan@.conf *
IR=/run/wpa_supplicant GROUP=netdev

ssid="Upside Down Labs 56"
beagleboard.org"
SN

mesh_fwding=1

File Name to Write: /etc/wpa supplicant/wpa supplicant-wland.conff |
r Al DOS Format u (¥ Backup File ®
- M| Ml Browse @

Fig. 5.12: Save credentials (ctrl + O) and Exit (ctrl + X)

44 Chapter 5. Demos and tutorials

BeaglePlay

(continued from previous page)

64 bytes from 8.8.8.8: icmp_seqg=7 ttl=118 time=5.39 ms

64 bytes from 8.8.8.8: icmp_seqg=8 ttl=118 time=5.94 ms

~C

-—— 8.8.8.8 ping statistics ———

8 packets transmitted, 8 received, 0% packet loss, time 7008ms
rtt min/avg/max/mdev = 5.281/6.445/9.043/1.274 ms

3 Applications = | Terminal - debian@Bea... #) Mon 6 Feb, 20:14 Beagle User
>-1 Terminal - debian@BeaglePlay: ~

File Edit View Terminal Tabs Help

Fig. 5.13: Connect to WiFi by running $ sudo wpa_cli -i wlan0 reconfigure

5.2.5 Disabling the WIFI Access Point

In certain situations, such as running HomeAssistant, you may chose to connect your BeaglePlay to the internet
via Ethernet. In this case, it may be desirable to disable it's Wifi access point so that users outside the local
network aren’t able to connect to it.

The Wifi Access Point that BeaglePlay provides is started using uDev rules. created by the bb-wlan0-defaults
package

You can simply remove the bb-wlan0-defaults package:

sudo apt remove bb-wlanO-defaults

Now just reboot and the Wifi Access point should no longer start.

You can also disable it by removing the two following udev rule files:

rm /etc/udev/rules.d/81l-add-SoftApO-interface.rules
rm /etc/udev/rules.d/82-SoftApO-start-hostpad.rules

The issue with doing this latter option is that if you later update your OS, the bb-wlan0O-defaults may get updated
as well and re-add the rules.

5.2. Connect WiFi 45

https://en.wikipedia.org/wiki/Udev

BeaglePlay

¥ Applications = Bl Terminal - debian@Bea... H %) Mon 6 Feb, 20:24 Beagle User

>-1 Terminal - debian@BeaglePlay: ~
File Edit View Terminal Tabs Help

[T Bl

Fig. 5.14: To check connection try running $ ping 8.8.8.8

5.2.6 Re-Enabling the WIFI Access Point

Conversely, you can re-enable the access point by re-installing the bb-wlan0-default package.

sudo apt install bb-wlanO-defaults —--reinstall

Now just reboot.

Todo: Add notes on changing SSID/Password

5.3 Using Grove

See qwiic_stemma_grove_addons.

A link to the appropriate 12C controller can be found at /dev/play/grove/i2c.

5.4 Using mikroBUS

Steps:
1. Identify if mikroBUS add-on includes a ClickID with manifest. If not, manifest must be supplied.
2. ldentify if mikroBUS add-on is supported by the kernel. If not, kernel module must be added.
3. ldentify how driver exposes the data: 110, net, etc.
4. Connect and power
5

. Verify and utilize

46 Chapter 5. Demos and tutorials

BeaglePlay

5.4.1 Using boards with ClickiD
What is mikroBUS?

mikroBUS is an open standard for add-on boards for sensors, connectivity, displays, storage and more with
over 1,400 available from just a single source, MikroE. With the flexibility of all of the most common embedded
serial busses, UART, 12C and SPI, along with ADC, PWM and GPIO functions, it is a great solution for connecting
all sorts of electronics.

Note: Learn more at https://www.mikroe.com/mikrobus

What is ClickIiD?

ClicklD enables mikroBUS add-on boards to be identified along with the configuration required to use it with
the mikroBUS Linux driver. The configuration portion is called a manifest.

Note: Learn more at https://github.com/MikroElektronika/click id

BeaglePlay’s Linux kernel is patched with a mikrobus driver that automatically reads the ClicklD and loads a
driver, greatly simplifying usage.

Does my add-on have ClickiD?

Look for the board’s 'D (ID) logo. It’s near the PWM pin on the upper right-hand side in the illustration below.

mikro
BUS

CONNECTION IC/MODULE

1-Wire® for ClickiD

LINUX OS

Click board

Fig. 5.15: mikroBUS clickID - BeaglePlay connection

If your add-on has ClickID, simply connect it while BeaglePlay is powered off and then apply power.

Example of examining boot log to see a ClicklD was detected.

5.4. Using mikroBUS a7

https://www.mikroe.com/click
https://www.mikroe.com/mikrobus
https://github.com/MikroElektronika/click_id

BeaglePlay

debian@BeaglePlay:~$ dmesg | grep mikrobus

[2.096254] mikrobus:mikrobus_port_register: registering port mikrobus-0
[2.096325] mikrobus mikrobus-0: mikrobus port 0 eeprom empty probing.
—default eeprom

[2.663698] mikrobus_manifest:mikrobus_manifest_attach_device: parsed.
—~device 1, driver=opt3001, protocol=3, reg=44

[2.663711] mikrobus_manifest:mikrobus_manifest_parse: Ambient 2 Click.
—manifest parsed with 1 devices

[2.663783] mikrobus mikrobus-0: registering device : opt3001

Note: Not all Click boards with ClicklD have valid manifest entries. Then you can follow What if my add-on
has invalid manifest entries? to make your add-on detected.

To use the add-on, see Accel Click Board Example.

What if my add-on doesn’t have ClickiD?

If add-on doesn’t have clickID then it can not be detected directly.

debian@BeaglePlay:~$ dmesg | grep mikrobus

[2.123994] mikrobus:mikrobus_port_register: registering port mikrobus-0
[2.124059] mikrobus mikrobus-0: mikrobus port 0 eeprom empty probing.
—default eeprom

Available manifest can be installed that has been created for your add-on as we have created over 100
of them. You can install the existing manifest files onto your BeaglePlay. First, make sure you have the latest
manifests installed in your system.

sudo apt update
sudo apt install bbb.io-clickid-manifests

Take a look at the list of manifest files to see if the Click or other mikrobus add-on board manifest is
installed.

debian@BeaglePlay:~$ 1s /lib/firmware/mikrobus/

10DOF-CLICK.mnfb COMPASS—-2-CLICK.mnfb I2C-2-SPI-CLICK.mnfb -
o PWM-CLICK.mnfb

13DOF-2-CLICK.mnfb COMPASS-CLICK.mnfb I2C-MUX-CLICK.mnfb -
. REFID-CLICK.mnfb

3D-HALL-3-CLICK.mnfb CURRENT-CLICK.mnfb ILLUMINANCE-CLICK.mnfb .
— RF-METER-CLICK.mnfb

3D-HALL-6-CLICK.mnfb DAC-7-CLICK.mnfb IR-GESTURE-CLICK.mnfb .
o RMS-TO-DC-CLICK.mnfb

6DOF-IMU-2-CLICK.mnfb DAC-CLICK.mnfb IR-THERMO-2-CLICK.mnfb _
— RTC-6-CLICK.mnfb

6DOF-IMU-4-CLICK.mnfb DIGIPOT-3-CLICK.mnfb LED-DRIVER-7-CLICK.mnfb..
— SHT1x-CLICK.mnfb

6DOF-IMU-6-CLICK.mnfb DIGIPOT-CLICK.mnfb LIGHTRANGER-2-CLICK.
—mnfb SHT-CLICK.mnfb

6DOF-IMU-8-CLICK.mnfb EEPROM-2-CLICK.mnfb LIGHTRANGER-3-CLICK.
—mnfb SMOKE-CLICK.mnfb

9DOF-CLICK.mnfb EEPROM-3-CLICK.mnfb LIGHTRANGER-CLICK.mnfb ..
— TEMP-HUM-11-CLICK.mnfb

ACCEL-3-CLICK.mnfb EEPROM-CLICK.mnfb LPS22HB-CLICK.mnfb .
o TEMP-HUM-12-CLICK.mnfb

ACCEL-5-CLICK.mnfb ENVIRONMENT-CLICK.mnfb LSM303AGR-CLICK.mnfb -
- TEMP-HUM-3-CLICK.mnfb

ACCEL-6-CLICK.mnfb ETH-CLICK.mnfb LSM6DSL-CLICK.mnfb -
— TEMP-HUM-4-CLICK.mnfb

(continues on next page)

48 Chapter 5. Demos and tutorials

BeaglePlay

(continued from previous page)

ACCEL-8-CLICK.mnfb ETH-WIZ-CLICK.mnfb MAGNETIC-LINEAR-CLICK.
—mnfb TEMP-HUM-7-CLICK.mnfb

ACCEL-CLICK.mnfb FLASH-2-CLICK.mnfb MAGNETIC-ROTARY-CLICK.

—mnfb TEMP-HUM-9-CLICK.mnfb

ADC-2-CLICK.mnfb FLASH-CLICK.mnfb MICROSD-CLICK.mnfb -
— TEMP-HUM-CLICK.mnfb

ADC-3-CLICK.mnfb GENERIC-SPI-CLICK.mnfb MPU-9DOF-CLICK.mnfb -
— TEMP-LOG-3-CLICK.mnfb

ADC-5-CLICK.mnfb GEOMAGNETIC-CLICK.mnfb MPU-IMU-CLICK.mnfb -
< TEMP-LOG-4-CLICK.mnfb

ADC-8-CLICK.mnfb GNSS-4-CLICK.mnfb NO2-2-CLICK.mnfb -
— TEMP-LOG-6-CLICK.mnfb

ADC-CLICK.mnfb GNSS-7-CLICK.mnfb NO2-CLICK.mnfb -
— THERMO-12-CLICK.mnfb

ATIR-QUALITY-2-CLICK.mnfb GNSS-ZOE-CLICK.mnfb OLEDB-CLICK.mnfb -
< THERMO-15-CLICK.mnfb

AIR-QUALITY-3-CLICK.mnfb GSR-CLICK.mnfb OLEDC-CLICK.mnfb -
s THERMO-17-CLICK.mnfb

ATR-QUALITY-5-CLICK.mnfb GYRO-2-CLICK.mnfb OLEDW-CLICK.mnfb -
— THERMO-3-CLICK.mnfb

ALCOHOL-2-CLICK.mnfb GYRO-CLICK.mnfb OZONE-2-CLICK.mnfb -
— THERMO-4-CLICK.mnfb

ALCOHOL-3-CLICK.mnfb HALL-CURRENT-2-CLICK.mnfb PRESSURE-11-CLICK.mnfb _
< THERMO-7-CLICK.mnfb

ALTITUDE-3-CLICK.mnfb HALL-CURRENT-3-CLICK.mnfb PRESSURE-3-CLICK.mnfb .
— THERMO-8-CLICK.mnfb

ALTITUDE-CLICK.mnfb HALL-CURRENT-4-CLICK.mnfb PRESSURE-4-CLICK.mnfb .
< THERMO-CLICK.mnfb

AMBIENT-2-CLICK.mnfb HDC1000-CLICK.mnfb PRESSURE-CLICK.mnfb -
< THERMOSTAT-3-CLICK.mnfb

AMBIENT-4-CLICK.mnfb HEART-RATE-3-CLICK.mnfb PROXIMITY-10-CLICK.mnfb..
. UV-3-CLICK.mnfb

AMBIENT-5-CLICK.mnfb HEART-RATE-4-CLICK.mnfb PROXIMITY-2-CLICK.mnfb .
< VACUUM-CLICK.mnfb

AMMETER-CLICK.mnfb HEART-RATE-5-CLICK.mnfb PROXIMITY-5-CLICK.mnfb .
N VOLTMETER-CLICK.mnfb

COLOR-2-CLICK.mnfb HEART-RATE-7-CLICK.mnfb PROXIMITY-9-CLICK.mnfb _
— WAVEFORM-CLICK.mnfb

COLOR-7-CLICK.mnfb HEART-RATE-CLICK.mnfb PROXIMITY-CLICK.mnfb -
— WEATHER-CLICK.mnfb

Below command to grant root privileges of the intended user and then enter passsword. This will take you to
the different shell.

sudo su

Then, load the appropriate manifest using the mikrobus bus driver. For example, with the Ambient 2
Click, you can write that manifest tothemikrobus—0 new_device entry.

cat /lib/firmware/mikrobus/AMBIENT-2-CLICK.mnfb > /sys/bus/mikrobus/devices/
—mikrobus-0/new_device

You can now exit this shell.
exit

Once done, you can check it using command dmesg |
detected.

grep mikrobus which shows that add-on is now

debian@BeaglePlay:~$ dmesg | grep mikrobus
[2.096254] mikrobus:mikrobus_port_register: registering port mikrobus-0

(continues on next page)

5.4. Using mikroBUS 49

BeaglePlay

(continued from previous page)

[2.096325] mikrobus mikrobus-0: mikrobus port 0 eeprom empty probing.
—default eeprom

[2.663698] mikrobus_manifest:mikrobus_manifest_attach_device: parsed.
—device 1, driver=opt3001, protocol=3, reg=44

[2.663711] mikrobus_manifest:mikrobus_manifest_parse: Ambient 2 Click.
—manifest parsed with 1 devices

[2.663783] mikrobus mikrobus-0: registering device : opt3001

Note: It'll forget on reboot... need to have a boot service.

Todo: To make it stick, ...

What if my add-on has invalid manifest entries?

Not all Click boards with ClicklD have valid manifest entries. If your add-on has clicklD but shows the command
output like below.

debian@BeaglePlay:~$ dmesg | grep mikrobus

[2.119771] mikrobus:mikrobus_port_register: registering port mikrobus-0

[2.119842] mikrobus mikrobus-0: mikrobus port 0 eeprom empty probing.
—default eeprom

[2.261113] mikrobus_manifest:mikrobus_manifest_header_validate: manifest.
—version too new (150.189 > 0.3)

[2.261130] mikrobus mikrobus—-0: invalid manifest size -22

There are some available manifest that can be used to write in the eeprom of clicklD board. Once you sudo
apt update and sudo apt install bbb.io-clickid-manifests then you can see the
list of manifests using command 1s /lib/firmware/mikrobus/. Let's take the Accel Click -
ClickID Board with invalid manifest entries, To get the valid manifest we need to write ACCEL-CLICK.
mnflb to eeprom of ClickID board using the following commands.

First check the file name for the add-on device. It can be in the form of wl_bus_master]l -xX—-xXXXxXXXX.

debian@BeaglePlay:~$ 1s /sys/bus/wl/devices/
wl_bus_masterl wl_bus_masterl-xx—xXXxXXXXX

Then in the following command, /lib/firmware/mikrobus/ACCEL-CLICK.mnfb is the
path of manifest file and /sys/bus/wl/devices/wl_bus_masterl-xx—XxXxXxXxXxXX/
mikrobus_manifest is path for one wire eeprom clickiD board. You must replace the the file
name wl_bus_masterl-xx—xxxxxxx with your clicklD board file in the below command.

debian@BeaglePlay:~$ sudo dd if=/lib/firmware/mikrobus/ACCEL-CLICK.mnfb of=/
—sys/bus/wl/devices/wl_bus_masterl-xx—xxxxxxx/mikrobus_manifest

0+1 records in

0+1 records out

132 bytes copied, 0.0144496 s, 9.1 kB/s

Now, Reboot your BeaglePlay. After rebooting, the add-on has been detected with valid manifest entries.

debian@BeaglePlay:~$ dmesg | grep mikrobus

[2.126654] mikrobus:mikrobus_port_register: registering port mikrobus-0

[2.126727] mikrobus mikrobus-0: mikrobus port 0 eeprom empty probing.

—~default eeprom

[2.797179] mikrobus_manifest:mikrobus_manifest_attach_device: parsed.

—~device 1, driver=adx1345, protocol=3, reg=1d

[2.797191] mikrobus_manifest:mikrobus_manifest_parse: Accel Click.
(continues on next page)

50 Chapter 5. Demos and tutorials

BeaglePlay

(continued from previous page)

—manifest parsed with 1 devices
[2.797267] mikrobus mikrobus-0: registering device : adx1345

Note: The updation has done in the eeprom of clickID board. It will not forget after reboot.

Note: We will be adding a link to the mikrobus—0 device at /dev/play/mikrobus inthe near future,
but you can find it for now at /sys/bus/mikrobus/devices/mikrobus—0. If you need to supply
an ID (manifest), this is the directory where you will do it.

Manifesto: https://git.beagleboard.org/beagleconnect/manifesto

Patched Linux with out-of-tree Mikrobus driver: https://git.beagleboard.org/beagleboard/linux

To use the add-on, see Accel Click Board Example.

Accel Click Board Example

Next, let’s explore how to read raw sensor values using the Accel Click board. This step will help us understand
the basics of sensor data retrieval and processing.

First, let’s check the IO devices available.

debian@BeaglePlay:~$ ls /sys/bus/iio/devices/
iio:device0 iio:devicel

Considering the device iio:deviceO is the MikroBUS click ID connected to the BeaglePlay board. De-
pending on your specific setup and device configuration, you might need to adjust the path or device number
(device0) accordingly. In this case deviceO corresponds to our Accel Click, let’s check its name.

debian@BeaglePlay:~$ cat /sys/bus/iio/devices/iio\:device(O/name
adx1345

The file corresponding to the IlO device, including raw values, can be viewed using the following command:

debian@BeaglePlay:~$ 1s /sys/bus/iio/devices/iio\:device0

dev in_accel_scale in_accel_x_raw in_

—accel_y_raw in_accel_z_raw power subsystem
in_accel_sampling_frequency in_accel_x_calibbias in_accel_y_calibbias in_
—~accel_z_calibbias name sampling_frequency_available uevent

To view the raw values from the accel click (assuming 110 : deviceO is configured correctly for your MikroBUS
click ID on the BeaglePlay board), you can use the following command:

debian@BeaglePlay:~$ cat /sys/bus/iio/devices/iio\:deviceO/in_accel_x_raw
3

This command reads and displays the raw X-axis accelerometer data from iio:deviceO. You can replace
in_accel_x_rawwithin_accel_y_rawor in_accel_z_raw to view raw data from the Y-axis or
Z-axis accelerometer channels respectively, depending on your requirements.

To create a script displays accelerometer raw data values from iio:device0O use nano accelclick.
sh command. Copy the below script and paste it to the accelclick.sh file. It reads the raw X, Y,
and Z axis values from /sys/bus/iio/devices/iio:device0/in_accel_x_raw, /sys/
bus/iio/devices/iio:device0/in_accel_y_raw, and /sys/bus/iio/devices/
iio:device0/in_accel_z_raw respectively.

5.4. Using mikroBUS 51

https://git.beagleboard.org/beagleconnect/manifesto
https://git.beagleboard.org/beagleboard/linux

BeaglePlay

(cat /sys/bus/iio/devices/iio\:device(0/in_accel_x_raw)
(cat /sys/bus/iio/devices/iio\:device0/in_accel_y_raw)
(cat /sys/bus/iio/devices/iio\:devicel/in_accel_z_raw)
o "X = ${X} Y = ${Y} Z= S{z}"

Note: Adjust the device path 1io0:device(according to your setup. Also, ensure that your system and
hardware configuration are correctly set up to provide live accelerometer data through these paths.

To make the script file executable, use the following command:
debian@BeaglePlay:~$ chmod +x accelclick.sh

When you run watch -n 0.5 ./accelclick.sh, the watch command will execute ./
accelclick. sh every 0.5 seconds and display its output in the terminal.

debian@BeaglePlay:~$ watch —-n 0.5 ./accelclick.sh

This is the output of your accelclick.sh script. It shows the current values of your accelerometer’s X, Y, and Z
axis in raw form.

Every 0.5s: ./accelclick.sh

X =3 Y = 11 Z= 284

5.4.2 Using boards with Linux drivers

Depending on the type of mikrobus add-on board, the Linux driver could be of various different types. For
sensors, the most common is /O driver.

11O driver

Per https://docs.kernel.org/driver-api/iio/intro.html,

The main purpose of the Industrial I/0 subsystem (110) is to provide support for devices that in some
sense perform either analog-to-digital conversion (ADC) or digital-to-analog conversion (DAC) or
both. The aim is to fill the gap between the somewhat similar hwmon and input subsystems.
Hwmon is directed at low sample rate sensors used to monitor and control the system itself, like
fan speed control or temperature measurement. Inputis, as its name suggests, focused on human
interaction input devices (keyboard, mouse, touchscreen). In some cases there is considerable
overlap between these and IlO.

Devices that fall into this category include:
¢ analog to digital converters (ADCs)
e accelerometers
e capacitance to digital converters (CDCs)
» digital to analog converters (DACs)
e gyroscopes
¢ inertial measurement units (IMUs)
e color and light sensors
* magnetometers

* pressure sensors

52 Chapter 5. Demos and tutorials

https://docs.kernel.org/driver-api/iio/intro.html

BeaglePlay

e proximity sensors
* temperature sensors
See also https://wiki.analog.com/software/linux/docs/iio/iio.

To discover IO driver enabled devices, use the 1io_info command.

debian@BeaglePlay:~$ iio_info
Library version: 0.24 (git tag: v0.24)
Compiled with backends: local xml ip usb
IIO context created with local backend.
Backend version: 0.24 (git tag: v0.24)
Backend description string: Linux BeaglePlay 5.10.168-ti-arm64-r104
—#1lbullseye SMP Thu Jun 8 23:07:22 UTC 2023 aarché64
IIO context has 2 attributes:
local,kernel: 5.10.168-ti-arm64-r104
uri: local:
IIO context has 2 devices:
iio:deviceO: opt3001
1 channels found:
illuminance: (input)
2 channel-specific attributes found:
attr O0: input value: 163.680000
attr 1: integration_time wvalue: 0.800000
2 device-specific attributes found:
attr 0: current_timestamp_clock value:.
—realtime

attr 1: integration_time_available value:

-1 0.8
No trigger on this device
iio:devicel: adcl102s051
2 channels found:
voltagel: (input)
2 channel-specific attributes found:
attr 0: raw value: 4084
attr 1: scale value: 0.805664062
voltageO: (input)
2 channel-specific attributes found:
attr 0: raw value: 2440
attr 1: scale value: 0.805664062
No trigger on this device

Note that the units are standardized for the 110 interface based on the device type. If raw values are provided,

a scale must be applied to get to the standardized units.

Storage driver

Network driver
5.4.3 How does ClicklD work?

5.4.4 Disabling the mikroBUS driver

If you'd like to use other means to control the mikroBUS connector, you might want to disable the mikroBUS

driver. This is most easily done by enabling a device tree overlay at boot.

Todo: Document kernel version that integrates this overlay and where to get update instructions.

5.4. Using mikroBUS

53

https://wiki.analog.com/software/linux/docs/iio/iio

BeaglePlay

Note: To utilize the overlay with these instructions, make sure to have TBD version of kernel, modules and
firmware installed. Use uname -a to determine the currently running kernel version. See TBD for information
on how to update.

Apply overlay to disable mikrobus0 instance.

echo ” fdtoverlays /overlays/k3-am625-beagleplay-release-mikrobus.dtbo” |._
—sudo tee —-a /boot/firmware/extlinux/extlinux.conf
sudo shutdown —-r now

Log back in after reboot and verify the device driver did not capture the busses.

debian@BeaglePlay:~$ 1s /dev/play

grove mikrobus qgwiic

debian@BeaglePlay:~$ 1ls /dev/play/mikrobus/

i2c

debian@BeaglePlay:~$ ls /sys/bus/mikrobus/devices/
debian@BeaglePlay:~$ 1ls /proc/device-tree/chosen/overlays/
k3-am625-beagleplay-release-mikrobus name
debian@BeaglePlay:~$

To re-enable.

sudo sed -e '/release-mikrobus/ s/"#*/#/' -1 /boot/firmware/extlinux/
—extlinux.conf
sudo shutdown —-r now

Verify driver is enabled again.

debian@BeaglePlay:~$ 1ls /sys/bus/mikrobus/devices/

mikrobus-0

debian@BeaglePlay:~$ ls /proc/device-tree/chosen/overlays/

1s: cannot access '/proc/device-tree/chosen/overlays/': No such file or.
—~directory

debian@BeaglePlay:~$

Todo:
* How do turn off the driver?
e How do turn on spidev?
* How do | enable GPIO?

* How do a provide a manifest?

Todo:
¢ Needs udev

* Needs live description

5.5 Using QWIIC

See qwiic_stemma_grove_addons.

A link to the appropriate 12C controller can be found at /dev/play/qwiic/i2c.

54 Chapter 5. Demos and tutorials

BeaglePlay

5.5.1 OLED Display using QWIIC
Let's see a simple way to use an I12C QWIIC OLED from Sparkfun with only minor modifications to the source
code. (They will probably have this working by default in the future)
The Sparkfun Qwiic OLED Display Library Comes in 3 Parts:
* QWIIC_I2C_Py - We will need to modify this
* QWIIC-OLED-Base
* QWIIC-OLED-Display

The reason we need to modify Qwiic_I2C_Py is that by default, the library expects only one I12C Bus to be present
for something like a Raspberry Pi, but our Beagle has many! Specifically, we want to use 12C-5 which is the
bus connected to the QWIIC header.

5.5.2 Wiring/Connection

Make the connection as shown below.

Qwiic OLED Display

| csl. 22-pin]
0.5mm pitch

.....

BeaglePlay
for AMB2x

Fig. 5.16: BeaglePlay QWIIC OLED Connection

You can check what bus a device is connected to by scanning it. First lets see what buses are available.

"2

debian@BeaglePlay:~$ 1ls /dev/ | grep "i2c”
i2c-0
i2c-1
i2c-2
(continues on next page)

5.5. Using QWIIC 55

BeaglePlay

i2c-3
i2c-5

You can now scan each bus as follows:

i2cdetect -y -r O

(continued from previous page)

The O corresponds to 12c—0. we can then replace 0 with each bus until we find the oled, in this case, we

know we are looking for a device at address 0x3C.

debian@BeaglePlay:~$ i2cdetect -y -r 0
0 1 2 3 4 5 6 7 8 9 a b c¢c d e f£f
00: = == == == == == == ==

10. S
20. —_—— e e e e e e e
300 UU —— —— —— —— —— —— —= —— —— = = = - - -
40. _— e e e e e e e e e e e e
500 UU —= —= —= == —= —= —= —= —= —= —— —— = = -
60: —— —— —— —— —— —— —— —— UU —— —— —— —— —— —— ——
70: == == == —— —— —— - ——

Note that when we see a UU, this indicates that there is a device which is currently being used by another linux
process.This is most likely another 12C device that the Beagle uses, such as the EEPROM. You can safely ignore

this, but it's helpful to know what you’'re looking at.

Moving on, let’s see Bus 5 (Hint, 12C-5 is the QWIIC connector):

debian@BeaglePlay:~$ i2cdetect -y -r 5
0 1 2 3 4 5 6 7 8 9 a b c¢c d e f£f
00: = == == == == == == ==

10. P

20. — e e e e e e e e e e e e e e e

308 == == == == == == == == —= —— —— —= 3¢ -= -= --

405 == == = = o

50. = = e e e e e e e e e e e e e e

60: —= —= —= —— —— —— —— —— —— o o
70: —= —= —= —— —— —— —— ——

5.5.3 Using Python libraries to display on OLED.

let’s install sparkfun Qwiic_I2C_Py Library.

git clone https://github.com/virtualRadish/Qwiic_I2C_Py_LC

Change directory to Qwiic_TI2C_Py_LC.

cd Qwiic_TI2C_Py_LC/

Install setup.py.

sudo python setup.py install

Install python libraries for OLED Displays.

sudo pip install sparkfun-gqwiic-oled-base
sudo pip install sparkfun-gwiic-oled-display

Let’s create a file Hel1loWorld. py to display some text on display.

56 Chapter 5.

Demos and tutorials

BeaglePlay

nano HelloWorld.py

Now copy paste the text below, then press CTRL+0 and ENTER to save, CTRL+X to exit.

from __ future__ import print_function
import gwiic_oled_display
import sys
import time
def runExample() :
These three lines of code are all you need to initialize the
OLED and print the splash screen.
Before you can start using the OLED, call begin() to init
all of the pins and configure the OLED.
print (”\nSparkFun OLED Display - Hello World Example\n”)
Create instance with parameters for Qwiic OLED Display
myOLED = gwiic_oled display.QwiicOledDisplay (0x3C)
if not myOLED.connected:
print ("The Qwiic OLED Display isn't connected to the system. Please.
—check your connection”, \
file=sys.stderr)
return
myOLED .begin ()

clear (ALL) will clear out the OLED's graphic memory.
myOLED.clear (myOLED.ALL) # Clear the display's memory (gets rid of.
—artifacts)
To actually draw anything on the display, you must call the display ().
—function.
myOLED.display () # Display buffer contents
time.sleep (1)
clear (PAGE) will clear the SBC display buffer.
myOLED.clear (myOLED.PAGE) # Clear the display's buffer
Display buffer contents
myOLED.display ()
time.sleep (1)
Print ”Hello World”

Add text
myOLED.print ("Hello World!”)
myOLED.set_cursor (0, 10) # Set cursor to top-left
myOLED.print ("I'm BeaglePlay!”)

Display buffer contents
myOLED.display ()

if _ name_ == '_ main_ ':

try:
runExample ()

except (KeyboardInterrupt, SystemExit) as exErr:
print (”\nEnding OLED Hello Example”)
sys.exit (0)

Now run it. After executing following command, “Hello World!” in first line and “I’'m BeaglePlay!” in second
line will be printed on OLED display.

python HelloWorld.py
Now, lets display our current IP Address.
Shout out out to this StackOverflow one-liner which gets our IP Address cleanly so we can display it as a string:

ipAddr = ((([ip for ip in socket.gethostbyname_ex (socket.gethostname()) [2]_
(continues on next page)

5.5. Using QWIIC 57

https://stackoverflow.com/questions/166506/finding-local-ip-addresses-using-pythons-stdlib

BeaglePlay

RTC-BAT
CR1220. 119

o
(=]
=
<
[
QO
<
[
5S¢

] Hetlo World!
4 1’m BeagslePlay!

Fig. 5.17: BeaglePlay QWIIC OLED HelloWorld.py Output

58

Chapter 5. Demos and tutorials

BeaglePlay

(continued from previous page)

—~1f not ip.startswith (”127.”)] or [[(s.connect ((”8.8.8.8"”, 53)), s.
—getsockname () [0], s.close()) for s in [socket.socket (socket.AF_INET, .
—~socket .SOCK_DGRAM) 11 [0]

[1]11) + ["no IP found”])[0])

Additionally in above text we can display our current IP Address using below script. You can create a new file
then copy paste it and run.

from __ future__ import print_function
import gqwiic_oled_display

import sys

import time

import socket

def runExample() :

IPAddr=(([ip for ip in socket.gethostbyname_ex (socket.gethostname()) [2]._
—~if not ip.startswith(”127.”)] or [[(s.connect ((”8.8.8.8”, 53)), s.
—getsockname () [0], s.close()) for s in [socket.socket (socket.AF_INET, .
—~socket .SOCK_DGRAM) 11 [0]1[1]]) + ["no IP found”]) [0]

These three lines of code are all you need to initialize the

OLED and print the splash screen.

Before you can start using the OLED, call begin() to init

all of the pins and configure the OLED.

print (”"\nSparkFun OLED Display - Hello World Example\n”)
Create instance with parameters for Qwiic OLED Display
myOLED = gwiic_oled_display.QwiicOledDisplay (0x3C)
if not myOLED.connected:
print ("The Qwiic OLED Display isn't connected to the system. Please.
—~check your connection”, \
file=sys.stderr)
return
myOLED .begin ()

clear(ALL) will clear out the OLED's graphic memory.
myOLED.clear (myOLED.ALL) # Clear the display's memory (gets rid of.
—artifacts)
To actually draw anything on the display, you must call the display()._
—~function.
myOLED.display() # Display buffer contents
time.sleep (1)
clear (PAGE) will clear the SBC display buffer.
myOLED.clear (myOLED.PAGE) # Clear the display's buffer
Display buffer contents
myOLED.display ()
time.sleep (1)
Print ”Hello World”

—

Add text
myOLED.print ("Hello World!”)
myOLED.set_cursor (0, 10) # Set cursor to top-left
myOLED.print (”"I'm BeaglePlay!”)
myOLED.set_cursor (0, 25) # Set cursor to top-left
myOLED.print ("My IP Is:”)
myOLED.print (IPAddr)

Display buffer contents
myOLED.display ()

if name == '_ main Ug

(continues on next page)

5.5. Using QWIIC 59

BeaglePlay

(continued from previous page)
try:
runExample ()
except (KeyboardInterrupt, SystemExit) as exErr:
print (”\nEnding OLED Hello Example”)
sys.exit (0)

You will now see current IP Address as well on OLED display.

CEEIEE
CEFIEEREf)

JTAG-AMB2

3
&
a
=

Hello lorld
I’m BeaglePlay
My IP. Is:18.06.0.118

Credits: Andrei Aldea, Nishka Rao, Brian Berner

5.6 Using Node-RED

Node-RED provides a browser-based editor that makes it easy to wire together flows using the wide range of
nodes in the palette that can be deployed to its runtime in a single-click.

5.6.1 Pre-requisites

Note: If you're using the official BeaglePlay debian image then you most likely can skip the Node-RED step.

5.6.2 Node-RED

Node-RED is pre-installed with the bb-node-red-installer package. (both xfce and cinnamon) Manual steps to
install Node-RED can be found in the official guide here

60 Chapter 5. Demos and tutorials

https://www.hackster.io/506688/beagleplay-qwiic-oled-hello-world-ee7270
https://nodered.org/docs/getting-started/beaglebone

BeaglePlay

Linux Sensors

22000 24000 26000 28000 30000 320‘00 34000
+1.492574e12

Fig. 5.18: https://youtu.be/211Y2ZnTmnw

5.6.3 MikroE

MikroE Accel click is recommended, but many other boards can work. More information about the mikroBUS
interface can be found here.

5.6.4 Let’s get started!

First, we want to make sure the mikroBUS™ add-on board is connected and functioning as expected. To do
this, we make use of the iio_info command.

Connecting mikroBUS™ add-on board

iio_info is a utility for displaying information about local or remote 110 devices, in this case it's the Accel
click board.

Accessing Node-RED

Once your BeaglePlay is booted up and connected to your computer, access it from your browser by typing
192.168.7.2:1880 in your address bar. Learn more about remote browser in start-browse-to-beagle.

Creating a basic flow

In this flow we’ll take a look at how we can get the accelerometer readings output on the node red console.

First, let’s insert the exec function block. This will help us capture a linux command from an entry like /sys/
bus/iio/....

Double click on the function block and in the command paste:

cat /sys/bus/iio/devices/iio\:devicel.../in_accel_x_raw

5.6. Using Node-RED 61

https://youtu.be/2llY2ZnTmnw
https://www.mikroe.com/accel-click
https://man.archlinux.org/man/iio_info.1.en
https://www.mikroe.com/accel-click
https://www.mikroe.com/accel-click

BeaglePlay

Sun Dec 17 8@

Fig. 5.19: iio_info command output

Give it some name and press Done.
Next, we add the “Debug” node and connect it to the previous function block we made to get the output.

Optionally, as shown in the video we can also “Inject” a timestamp into the function block which will then go
into the debug console to give us the logs with timestamps.

2/9/2024,9:31:07 AM node: debug 1
50.payload : string(3]
b oogan

2/9/2024, 9:3

8 AM node: debug 1

10AM node: debug 1

timestamp (et | Get Accel X

Fig. 5.20: Node-RED debug logs

Adding a Gauge

Adding a Graph and 3 Axis

Todo:
e Add flow diagram

. - Show the output

62 Chapter 5. Demos and tutorials

BeaglePlay

Fig. 5.21: Node-RED base flow

Fig. 5.22: Node-RED base flow output

5.6. Using Node-RED 63

BeaglePlay

Fig. 5.23: Node-RED complete gauges flow

5.7 Using RTC

BeaglePlay has an onboard Real Time Clock (BQ32002). If you have installed a CR1220 battery, you can use
this to keep the time even when the device has been powered off, or has no Internet access to get time using

ntp servers.

5.7.1 Understanding multiple rtc devices

On the BeaglePlay there’s 2 separate RTC devices. One is the inbuilt one - which by default shows up as /
dev/rtc0. And the other is BQ32002 - which is it's own discrete chip - and shows up as /dev/rtcl by

default.

You can find out the time set in both these clocks with the hwclock command.

debian@BeaglePlay:~$ sudo hwclock -r ——rtc /dev/rtcO
2023-12-21 12:43:52.007564+05:30
debian@BeaglePlay:~$ sudo hwclock -r —-rtc /dev/rtcl
1970-01-01 05:33:28.877722+05:30

Note that the time in rt c0O has been set after booting up using ntp servers automatically.

64 Chapter 5. Demos and tutorials

BeaglePlay

5.7.2 Get the current time, timezone, and other settings

debian@BeaglePlay:~$ timedatectl
Local time: Thu 2023-12-21 00:20:19 EST
Universal time: Thu 2023-12-21 05:20:19 UTC
RTC time: Thu 2023-12-21 05:20:20
Time zone: America/New_York (EST, -0500)
System clock synchronized: yes
NTP service: active
RTC in local TZ: no

The above command shows the time set on BeaglePlay, the universal time, the time set on the RTC, the
timezone, and more. From the above we can see that the time in UTC is 5:20hrs and the time as per the
timezone is 00:20hrs.

5.7.3 Setting the timezone

You can see the available timezones using the following command -

debian@BeaglePlay:~$ timedatectl list-timezones

You can quit viewing the list by pressing the g character on your keyboard.
Once you have selected your timezone, you can set it as follows

debian@BeaglePlay:~$ sudo timedatectl set-timezone America/New_York

5.7.4 Enable ntp

We can set the time using ntp servers. This requires us to be connected to the Internet.

debian@BeaglePlay:~$ sudo timedatectl set-ntp true

5.7.5 Setting the time manually

You might want to set the time manually on your BeaglePlay. In this case you need to first disable the ntp
synchronization.

debian@BeaglePlay:~$ sudo timedatectl set-ntp false
debian@BeaglePlay:~$ sudo timedatectl set-time ”2023-12-21 03:00:00"

Using the above command we have set the time to 0300hrs on 21st December 2023.

5.7.6 Using rtcwake to sleep

If you would like to put your BeaglePlay to sleep for a predetermined period of time, you can use the rt cwake
command

debian@BeaglePlay:~$ sudo sudo rtcwake -m disk —--seconds 120 -d /dev/rtcl -v
Using UTC time.

delta =0

tzone =0

tzname = UTC

systime = 1703147162, (UTC) Thu Dec 21 08:26:02 2023

rtctime = 1703147162, (UTC) Thu Dec 21 08:26:02 2023
alarm 0, sys_time 1703147162, rtc_time 1703147162, seconds 120
(continues on next page)

5.7. Using RTC 65

BeaglePlay

(continued from previous page)

rtcwake: wakeup from ”disk” using /dev/rtcl at Thu Dec 21 08:28:03 2023
suspend mode: disk; suspending system

The above command puts your BeaglePlay to sleep for 120 seconds, by writing the contents of your mem-
ory to disk. You can find what are the different modes that are supported similar to disk by running the
——1list-modes subcommand.

debian@BeaglePlay:~$ rtcwake —--list-modes
freeze mem disk off no on disable show

5.8 Using OLDI Displays
5.9 Using CSI Cameras

5.10 Wireless MCU Zephyr Development

BeaglePlay includes a Texas Instruments CC1352P7 wireless microcontroller (MCU) that can be programmed
using the Linux Foundation Zephyr RTOS.

Developing directly in Zephyr will not be ultimately required for end-users who won't touch the firmware running
on the CC1352 on BeaglePlay™ and will instead use the provided wireless functionality. However, it is important
for early adopters as well as people looking to extend the functionality of the open source design. If you are
one of those people, this is a good place to get started.

Further, BeaglePlay is a reasonable development platform for creating Zephyr-based applications for
beagleconnect-freedom-home. The same Zephyr development environment setup here is also described for
targeting applications on that board.

5.10.1 Install the latest software image for BeaglePlay

Note: These instructions should be generic for BeaglePlay and other boards and only the specifics of which
image was used to test these instructions need be included here moving forward and the detailed instructions
can be referenced elsewhere.

You may want to download and install the latest Debian Linux operating system image for BeaglePlay.

Note: These instructions were validated with the BeagleBoard.org Debian image BeaglePlay Debian 11.6
Flasher 2023-03-10.

1. Load this image to a microSD card using a tool like Etcher.
. Insert the microSD card into BeaglePlay.

. Power BeaglePlay via the USB-C connector.

. Remove power from BeaglePlay.

2

3

4. Wait for the LEDs to start blinking, then turn off.

5

6. IMPORTANT Remove microSD card from BeaglePlay.
7

. Apply power to BeaglePlay.

66 Chapter 5. Demos and tutorials

https://www.ti.com/product/CC1352P7
https://www.zephyrproject.org/
https://www.beagleboard.org/distros/beagleplay-debian-11-6-flasher-2023-03-10
https://www.beagleboard.org/distros/beagleplay-debian-11-6-flasher-2023-03-10

BeaglePlay

Note: This will flash the CC1352 as well as the eMMC flash on BeaglePlay.

Todo: Describe how to know it is working

5.10.2 Log into BeaglePlay

Please either plug in a keyboard, monitor and mouse or ssh into the board. We can point somewhere else for
instructions on this. You can also point your web browser to the board to log into the Visual Studio Code IDE
environment.

Todo: A big part of what is missing here is to put your BeaglePlay on the Internet such that we can download
things in later steps. That has been initially brushed over.

5.10.3 Flash existing IEEE 802.15.4 radio bridge (WPANUSB) firmware

If you've recieved a board fresh from the factory, this is already done and not necessary, unless you want to
restore the contents back to the factory condition.

Background

This WPANUSB application was originally developed for radio devices with a USB interface. The CC1352P7 does
not have a USB device, so the application was modified to communicate over a UART serial interface.

For the beagleconnect-freedom-home, a USB-to-UART bridge device was used and the USB endpoints were
made compatible with the WPANUSB linux driver which we augmented to support this board. To utilize the
existing WPANUSB Zephyr application and this Linux driver, we chose to encode our UART traffic with HDLC.
This has the advantage of enabing a serial console interface to the Zephyr shell while WPANUSB-specific traffic
is directed to other USB endpoints.

For BeaglePlay, the USB-to-UART bridge is not used, but we largely kept the same WPANUSB application, in-
cluding the HDLC encoding.

Note: Now you know why this WPAN bridge application is called WPANUSB, even though USB isn’t used!

Steps

1. Ensure the bcfserial driver isn’t blocking the serial port.

echo ” fdtoverlays /overlays/k3-am625-beagleplay-bcfserial-no—
~firmware.dtbo” | sudo tee -a /boot/firmware/extlinux/extlinux.
—conf

sudo shutdown —-r now

Note: The default password is temppwd.

2. Download and flash the WPANUSB Zephyr application firmware onto the CC1352P7 on BeaglePlay from
the releases on git.beagleboard.org or distros on www.beagleboard.org/distros.

5.10. Wireless MCU Zephyr Development 67

https://github.com/finikorg/wpanusb
https://git.beagleboard.org/beagleconnect/linux/wpanusb/
https://en.wikipedia.org/wiki/High-Level_Data_Link_Control
https://simple.wikipedia.org/wiki/USB#How_USB_works
https://git.beagleboard.org/beagleconnect/zephyr/zephyr/-/releases
https://www.beagleboard.org/distros

BeaglePlay

debian@BeaglePlay:~$ wget https://files.beagle.cc/file/
—beagleboard-public-2021/images/zephyr-beagle-ccl1352-0.2.2.zip
debian@BeaglePlay:~$ unzip zephyr-beagle-cc1352-0.2.2.zip
debian@BeaglePlay:~$ build/play/cc2538-bsl.py build/play/wpanusb

3. Ensure the bcfserial driver is set to load.

sudo sed -e '/bcfserial-no-firmware/ s/ #*/#/' —-i /boot/firmware/
—extlinux/extlinux.conf
sudo shutdown —-r now

4. Verify the the 6LoWPAN network is up.

debian@BeaglePlay:~$ lsmod | grep bcfserial
bcfserial 24576 0 ©
mac802154 77824 2 wpanusb,bcfserial
debian@BeaglePlay:~$ ifconfig
SoftApO: flags=4163<UP,BROADCAST, RUNNING,MULTICAST> mtu 1500

inet 192.168.8.1 netmask 255.255.255.0 Dbroadcast 192.
—168.8.255

inet6 fe80::3eed:b0ff:fe7e:b5f7 prefixlen 64 scopeid.
—0x20<1link>

ether 3c:e4:b0:7e:b5:f7 txqueuelen 1000 (Ethernet)

RX packets 4046 Dbytes 576780 (563.2 KiB)

RX errors 0 dropped 0 overruns 0 frame O

TX packets 4953 bytes 5116336 (4.8 MiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions.
‘—)0

docker0: flags=4099<UP, BROADCAST,MULTICAST> mtu 1500

inet 172.17.0.1 netmask 255.255.0.0 Dbroadcast 172.17.
—255.255

ether 02:42:£8:29:41:69 txqueuelen 0 (Ethernet)

RX packets 0 bytes 0 (0.0 B)

RX errors 0 dropped 0 overruns 0 frame O

TX packets 0 bytes 0 (0.0 B)

TX errors 0 dropped 0 overruns 0O carrier 0 collisions.
‘—)O

ethO: flags=4099<UP, BROADCAST,MULTICAST> mtu 1500

ether f4:84:4c:fc:5d:13 txqueuelen 1000 (Ethernet)

RX packets 0 Dbytes 0 (0.0 B)

RX errors 0 dropped 0 overruns 0 frame O

TX packets 0 Dbytes 0 (0.0 B)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions.
‘—>O

lo: flags=73<UP, LOOPBACK, RUNNING> mtu 65536

inet 127.0.0.1 netmask 255.0.0.0

inet6 ::1 prefixlen 128 scopeid 0x10<host>

loop txqueuelen 1000 (Local Loopback)

RX packets 246239 Dbytes 19948296 (19.0 MiB)

RX errors 0 dropped 0 overruns 0 frame O

TX packets 246239 Dbytes 19948296 (19.0 MiB)

TX errors 0 dropped 0 overruns 0O carrier 0 collisions.
t—»O

lowpanO: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1280 ®@
inet6 fe80::200:0:0:0 prefixlen 64 scopeid 0x20<link> ®
inet6 2001:db8::2 prefixlen 64 scopeid 0x0<global> @
unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 .
—txqueuelen 1000 (UNSPEC)

(continues on next page)

68 Chapter 5. Demos and tutorials

BeaglePlay

(continued from previous page)

RX packets 107947 bytes 6629290 (6.3 MiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 2882 bytes 179511 (175.3 KiB) ©

TX errors 0 dropped 0 overruns 0 carrier 0 collisions.
-0
usb0: flags=4163<UP,BROADCAST, RUNNING, MULTICAST> mtu 1500

inet 192.168.7.2 netmask 255.255.255.0 Dbroadcast 192.
—~168.7.255

inet6 fe80::1leba:8cff:fea2:edbb prefixlen 64 scopeid.
—0x20<1link>

ether 1c:ba:8c:a2:ed:6b txqueuelen 1000 (Ethernet)

RX packets 9858 Dbytes 2638440 (2.5 MiB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 4155 bytes 1454082 (1.3 MiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions.
0
usbl: flags=4163<UP,BROADCAST, RUNNING, MULTICAST> mtu 1500

inet 192.168.6.2 netmask 255.255.255.0 Dbroadcast 192.
—168.6.255

inet6 fe80::1eba:8cff:fea2:ed6d prefixlen 64 scopeid.
—0x20<1link>

ether 1c:ba:8c:a2:ed:6d txqueuelen 1000 (Ethernet)

RX packets 469614 Dbytes 35385636 (33.7 MiB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 365548 bytes 66523708 (63.4 MiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions.
wlanO: flags=4163<UP, BROADCAST, RUNNING,MULTICAST> mtu 1500

inet 192.168.0.161 netmask 255.255.255.0 Dbroadcast 192.
—~168.0.255

inet6 fe80::3eed:b0ff:fe7e:b5f6 prefixlen 64 scopeid.
—0x20<1link>

inet6 2601:408:c083:b6c0::d00d prefixlen 128 scopeid.
—0x0<global>

ether 3c:e4:b0:7e:b5:f6 txqueuelen 1000 (Ethernet)

RX packets 3188898 bytes 678154090 (646.7 MiB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 1162074 Dbytes 293237366 (279.6 MiB)

TX errors 0 dropped 0 overruns O carrier 0 collisions.
‘—)0
wpan0O: flags=195<UP, BROADCAST, RUNNING,NOARP> mtu 123 ®

unspec 00-00-00-00-00-00-00-00-00
—txqueuelen 300 (UNSPEC)

RX packets 108495 bytes 2539160

RX errors 0 dropped 0 overruns

TX packets 2888 bytes 140523 (13

TX errors 0 dropped 0 overruns 0
-0

-00-00-00-00-00-00-00 .

(2.4 MiB)
0 frame O
7.2 KiB)

carrier 0 collisions..

® You'll want to see that the bcfserial driver has been loaded.

® There should be a lowpan0 interface.
® There should be a link-local address for lowpanO.

@ There should be a global address for lowpanO.

® Seeing some packets have been transmitted can give you some confidence.

® The wpanO interface should be there, but we have a 6LoWPAN adapter on top of it.

5.10. Wireless MCU Zephyr Development

69

BeaglePlay

Note: You may find Linux-WPAN.org useful.

5.10.4 Setup Zephyr development on BeaglePlay

1. Download and setup Zephyr for BeaglePlay

cd
sudo apt update
sudo apt install --no-install-recommends -y \

gperf \

ccache dfu-util \

libsdl2-dev \

libxml2-dev libxsltl-dev libssl-dev libjpeg62-turbo-dev.
—libmagicl \

libtool-bin autoconf automake libusb-1.0-0-dev \

python3-tk python3-virtualenv
wget https://github.com/zephyrproject-rtos/sdk-ng/releases/
—download/v0.15.1/zephyr-sdk-0.15.1_linux—-aarch64_minimal.tar.gz
tar xf zephyr-sdk-0.15.1 linux-aarch64_minimal.tar.gz
rm zephyr-sdk-0.15.1_linux-aarch64_minimal.tar.gz
./zephyr-sdk-0.15.1/setup.sh -t arm-zephyr-eabi -c
west init -m https://git.beagleboard.org/beagleconnect/zephyr/
—zephyr —-mr sdk zephyr-beagle-ccl352-sdk
cd SHOME/zephyr-beagle-ccl352-sdk
python3 -m virtualenv zephyr-beagle-ccl352-env
echo "export ZEPHYR_TOOLCHAIN_VARIANT=zephyr” >> SHOME/zephyr-—
—beagle-ccl352-sdk/zephyr-beagle-ccl352-env/bin/activate
echo "export ZEPHYR_SDK_INSTALL_DIR=$HOME/zephyr-sdk-0.15.1" >>
—SHOME /zephyr—-beagle-cc1352-sdk/zephyr-beagle-ccl352-env/bin/
—activate
echo "export ZEPHYR BASE=S$HOME/zephyr-beagle-ccl1352-sdk/zephyr” >
—> SHOME/zephyr-beagle-ccl1352-sdk/zephyr-beagle-ccl352-env/bin/
—activate
echo 'export PATH=S$HOME/zephyr-beagle-ccl352-sdk/zephyr/scripts:
—~SPATH' >> SHOME/zephyr-beagle-ccl1352-sdk/zephyr-beagle-ccl1352-
—env/bin/activate
echo "export BOARD=beagleplay” >> SHOME/zephyr-beagle-ccl352-sdk/
—zephyr-beagle-ccl352-env/bin/activate
source SHOME/zephyr-beagle-ccl352-sdk/zephyr-beagle-ccl1352-env/
—bin/activate
west update
west zephyr—-export
pip3 install -r zephyr/scripts/requirements-base.txt

2. Activate the Zephyr build environment

If you exit and come back, you’ll need to reactivate your Zephyr build environment.

source S$SHOME/zephyr-beagle-ccl352-sdk/zephyr-beagle-ccl352-env/
—bin/activate

3. Verify Zephyr setup for BeaglePlay

(zephyr-beagle—-ccl1352-env) debian@BeaglePlay:~$ cmake —--version
cmake version 3.22.1

CMake suite maintained and supported by Kitware (kitware.com/
—cmake) .
(zephyr-beagle-ccl1352-env) debian@BeaglePlay:~$ python3 —--version

Python 3.9.2
(continues on next page)

70

Chapter 5. Demos and tutorials

https://linux-wpan.org/documentation.html

BeaglePlay

(continued from previous page)

(zephyr-beagle-ccl1352-env) debian@BeaglePlay:~$ dtc —--version
Version: DTC 1.6.0

(zephyr-beagle—-ccl352-env) debian@BeaglePlay:~$ west —-version

West version: v0.14.0

(zephyr-beagle-ccl352-env) debian@BeaglePlay:~$./zephyr—-sdk-0.15.1/
—arm-zephyr-eabi/bin/arm-zephyr-eabi-gcc --version
arm-zephyr-eabi-gcc (Zephyr SDK 0.15.1) 12.1.0

Copyright (C) 2022 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. .

—~There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A.

—PARTICULAR PURPOSE.

5.10.5 Build applications for BeaglePlay CC1352

Now you can build various Zephyr applications

1. Build and flash Blinky example

cd $SHOME/zephyr-beagle-ccl1352-sdk/zephyr
west build -d build/play_blinky samples/basic/blinky
west flash -d build/play_blinky

2. Try out Micropython

cd
git clone -b beagleplay-ccl1352 https://git.beagleboard.org/

—beagleplay/micropython

cd micropython

west build -d play ports/zephyr
west flash -d play

tio /dev/ttyS4

5.10.6 Build applications for BeagleConnect Freedom

1. Build and flash Blinky example

cd $SHOME/zephyr-beagle-ccl1352-sdk/zephyr

west build -d build/freedom_blinky -b beagleconnect_freedom.
—samples/basic/blinky

west flash -d build/freedom_blinky

2. Try out Micropython

cd
git clone -b beagleplay-ccl1352 https://git.beagleboard.org/

—beagleplay/micropython

cd micropython

west build -d freedom -b beagleconnect_freedom ports/zephyr
west flash —-d freedom

tio /dev/ttyACMO

Important: Nothing below here is tested

Todo:

5.10. Wireless MCU Zephyr Development 71

BeaglePlay

west build -d build/sensortest zephyr/samples/boards/beagle_bcf/sensortest —-
— —DOVERLAY_CONFIG=overlay-subghz.conf

west build -d build/wpanusb modules/lib/wpanusb_bc —-- -DOVERLAY_
—CONFIG=overlay-subghz.conf

west build -d build/bcfserial modules/lib/wpanusb_bc —-- -DOVERLAY_
—~CONFIG=overlay-bcfserial.conf -DDTC_OVERLAY FILE=bcfserial.overlay

west build -d build/greybus modules/lib/greybus/samples/subsys/greybus/net —-—
— —DOVERLAY_CONFIG=overlay-802154-subg.conf

Flash applications to BeagleConnect Freedom

And then you can flash the BeagleConnect Freedom boards over USB
1. Make sure you are in Zephyr directory

cd S$HOME/bcf-zephyr

2. Flash Blinky

cc2538-bsl.py build/blinky

Debug applications over the serial terminal

Todo: Describe how to handle the serial connection

5.11 BeaglePlay Kernel Development

This guide is for all those who want to kick start their kernel development journey on the TI AM625x SoC Based
BeaglePlay.

5.11.1 Getting the Kernel Source Code
The Linux kernel is hosted on a number of servers around the world. The main repository is hosted on the
kernel.org website, but there are also mirrors hosted by other organizations, such as GitHub and Bootlin.

The Linux Torvalds tree is the most up-to-date source of the Linux kernel. It is used by Linux distributions and
other projects to build their own kernels. The tree is also a popular destination for kernel developers who want
to contribute to the kernel.

Kernel sources can directly be fetched using git:

git clone https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

A big advantage of using git to fetch the kernel sources is that you’ll easily be able to manage your changes,
keeping track of what you might edit. If you are looking for a quicker way to download a single version of the
Linux kernel sources to get started, you might consider fetching a “tarball” using wget.

72 Chapter 5. Demos and tutorials

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/

BeaglePlay

wget https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
—snapshot/linux—-6.6.tar.gz
tar xf linux-6.6.tar.gz

Note: While fetching a tarball with wget might be faster than fetching the full history with git, the ability
to track changes with git is significant.

For more information on using git, see beagleboard-git-usage.

5.11.2 Preparing to Build

These instructions should be valid on any Debian-based system, but were tested on a BeaglePlay itself.

sudo apt update
sudo apt install -y fakeroot build-essential libncurses-dev xz-utils libssl-
—~dev flex libelf-dev bison debhelper

5.11.3 Configuring the Kernel

The easiest way to configure the kernel is to start with a configuration known to work. A running BeaglePlay is
a great source for that configuration, as it gets compiled into the running kernel.

Note: If you don’t have a BeaglePlay booted, you can copy a known good kernel configuration from the
BeagleBoard.org Linux git repository at https://git.beagleboard.org/beagleboard/linux. On each release branch,
the last commit typically contains a bb.org_defconfig file. For BeaglePlay, you should look for an
armé64 branch.

Example: https://git.beagleboard.org/beagleboard/linux/-/blob/f47f74d11b19d8ae2f146de92c258f40e0930d86/
arch/arm64/configs/bb.org_defconfig

Running on a BeaglePlay, you can configure your kernel using /proc/config.gz. You'll also want to
make olddefconfig to update your config for the newer kernel. If you want to look at configuration
options that haven’t previously been configured, then use make oldconfig instead. Once you've got an
initial configuration, you can edit the configuration various ways including make menuconfig.

cd linux-6.6
zcat /proc/config.gz > .config
make olddefconfig

You can also take advantage of the running system to provide the WiFi regulatory database (regulatory.db). This
is needed such that your kernel sets the WiFi signals appropriately for compliance with regional restrictions.

For more information, see Linux wireless regulatory documentation and the signed database images at https:
//git.kernel.org/pub/scm/linux/kernel/git/sforshee/wireless-regdb.git/tree/.

mkdir -p firmware
cp /lib/firmware/regulatory.db* firmware/
5.11.4 Building the Kernel

Once you're set on your configuration, you'll want to build the kernel and build any external modules. To make
things simpler to install, we’ll create a Debian package of the kernel.

5.11. BeaglePlay Kernel Development 73

https://git.beagleboard.org/beagleboard/linux
https://git.beagleboard.org/beagleboard/linux/-/blob/f47f74d11b19d8ae2f146de92c258f40e0930d86/arch/arm64/configs/bb.org_defconfig
https://git.beagleboard.org/beagleboard/linux/-/blob/f47f74d11b19d8ae2f146de92c258f40e0930d86/arch/arm64/configs/bb.org_defconfig
https://www.kernel.org/doc/html/latest/networking/regulatory.html
https://git.kernel.org/pub/scm/linux/kernel/git/sforshee/wireless-regdb.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/sforshee/wireless-regdb.git/tree/

BeaglePlay

Note: Building the kernel on BeaglePlay might take a while. For me, it took about an hour.

@el oo
make -C ./linux—-6.6 —-j4 KDEB_PKGVERSION=1xross bindeb-pkg

5.11.5 Installing and Booting the Kernel

Important: In case your new kernel fails, you’ll want to be prepared to either reflash the board or to use a
serial cable to halt u-boot and request loading a working kernel still available on the board.

See Using Serial Console to setup access over the debug serial port.

Listing 5.1: Install 6.6.0 kernel and reboot
sudo dpkg —-i linux-image-6.6.0_1lxross_armé64.deb
sudo shutdown —-r now
As long as the kernel you built has no significant issues, you'll boot back into a running system.

If there was a boot or connectivity failure, you can try an alternate connectivity method, such as the Using
Serial Console or Ethernet, or you can reflash the board and try again from a known good kernel source.

For me, the linux-6.6 kernel booted fine, but the beagleplay.local (mDNS/Avahi broadcast) address did not
show up right away. | was able to find the BeaglePlay hosted WiFi access point, the connection to my local
WiFi network, connect over Ethernet and connect over USB network. The /dev/play directory did not exist, but
the /dev/bone directory did, so this gives me a good starting point for generating some patches to update the
mainline kernel. :-D

See beagleboard-linux-upstream for more next steps by providing updates you make to the kernel to the up-
stream repository for everyone to benefit and for you to benefit from on future kernel versions.

5.11.6 Kernel Debug

Consider reading the kernel documentation on debugging via gdb.

Also, consider the the Tl Linux Board Porting Series, specifically the module on debugging with JTAG in CCS.

5.11.7 References

* For more details on the Linux kernel build system, see The kernel build system on kernel.org.

¢ For additional guidance, see the official TI-SDK documentation for AM62X

5.12 BeagleConnect™ Greybus demo using BeagleConnect™ Free-
dom and BeaglePlay

5.12.1 BeaglePlay CC1352 Firmware
Build (Download and Setup Zephyr for BeaglePlay)

1. Install prerequisites

74 Chapter 5. Demos and tutorials

https://www.kernel.org/doc/html/latest/dev-tools/gdb-kernel-debugging.html
https://www.ti.com/video/3874392631001?keyMatch=LINUX%20KERNEL%20DEBUG
https://www.kernel.org/doc/html/latest/kbuild/index.html
https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/latest/exports/docs/linux/Foundational_Components_Kernel_Users_Guide.html

BeaglePlay

cd
sudo apt update
sudo apt install --no-install-recommends -y \
gperf \
ccache dfu-util \
libsdl2-dev \
libxml2-dev libxsltl-dev libssl-dev libjpeg62-turbo-dev.
—~libmagicl \
libtool-bin autoconf automake libusb-1.0-0-dev \
python3-tk python3-virtualenv

2. Download the latest Zephyr Release, extract it and cleanup
sudo wget https://github.com/zephyrproject-rtos/sdk-ng/releases/
—download/v0.16.3/zephyr-sdk—-0.16.3_linux—-aarch64_minimal.tar.xz

tar xf zephyr-sdk-0.16.3_linux-aarch64_minimal.tar.xz
rm zephyr-sdk-0.16.3_linux-aarch64_minimal.tar.xz

3. Run the Zephyr SDK Setup Script

./zephyr-sdk-0.16.3/setup.sh -t arm-zephyr-eabi -c

4. Download and Initialize West. (Zephyr’'s meta-tool)

Note: You may want to add /home/debian/.local/bin to your .bashrc file to make the West
command available after a reboot

pip3 install —--user -U west

export PATH="/home/debian/.local/bin:S$SPATH”

west init -m https://git.beagleboard.org/beagleconnect/zephyr/
—zephyr --mr sdk-next zephyr-beagle-ccl352-sdk

cd SHOME/zephyr-beagle-ccl1352-sdk

5. Setup a Python Virtual Environment and add our PATH Variables

virtualenv zephyr-beagle-ccl352-env

echo "export ZEPHYR_TOOLCHAIN_VARIANT=zephyr” >> SHOME/zephyr—
—beagle-ccl1352-sdk/zephyr-beagle-ccl352-env/bin/activate

echo "export ZEPHYR_SDK_INSTALL_DIR=$HOME/zephyr-sdk-0.16.3" >>
—SHOME /zephyr-beagle-ccl1352-sdk/zephyr-beagle-ccl1352-env/bin/
—activate

echo "export ZEPHYR BASE=$HOME/zephyr-beagle-ccl1352-sdk/zephyr” >
—> SHOME/zephyr-beagle-cc1352-sdk/zephyr-beagle-ccl1352-env/bin/
—activate

echo 'export PATH=SHOME/zephyr-beagle-ccl352-sdk/zephyr/scripts:
< SPATH' >> SHOME/zephyr-beagle-ccl1352-sdk/zephyr-beagle-ccl1352-
—env/bin/activate

echo "export BOARD=beagleplay_ccl1352” >> SHOME/zephyr-beagle-
—ccl352-sdk/zephyr-beagle-ccl352-env/bin/activate

source S$HOME/zephyr-beagle-ccl1352-sdk/zephyr-beagle-cc1352-env/
—bin/activate

6. Update West

west update
west zephyr-export

7. Install Python Prerequisites

pip3 install -r zephyr/scripts/requirements-base.txt

5.12. BeagleConnect™ Greybus demo using BeagleConnect™ Freedom and BeaglePlay 75

https://docs.zephyrproject.org/latest/develop/west/index.html/

BeaglePlay

8. Activate the Zephyr build environment
NOTE - If you exit and come back, you’ll need to reactivate your Zephyr build environment.

source S$SHOME/zephyr-beagle-ccl352-sdk/zephyr-beagle-ccl352-env/
—bin/activate

9. Verify Zephyr setup for BeaglePlay

(zephyr-beagle—-ccl352-env) debian@BeaglePlay:~$ cmake —--version
cmake version 3.22.1

CMake suite maintained and supported by Kitware (kitware.com/

—cmake) .

(zephyr-beagle-ccl1352-env) debian@BeaglePlay:~$ python3 —--version
Python 3.9.2

(zephyr-beagle-ccl1352-env) debian@BeaglePlay:~$ dtc —--version
Version: DTC 1.6.0

(zephyr-beagle-ccl1352-env) debian@BeaglePlay:~$ west —-version
West version: v0.14.0

(zephyr-beagle-ccl352-env) debian@BeaglePlay:~$./zephyr-sdk-0.16.3/
—arm-zephyr-eabi/bin/arm-zephyr-eabi-gcc --version
arm-zephyr-eabi-gcc (Zephyr SDK 0.16.3) 12.1.0

Copyright (C) 2022 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. o

—~There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A._

—~PARTICULAR PURPOSE.
10. Clone CC1352 Firmware at top level: https://git.beagleboard.org/gsoc/greybus/cc1352-firmware
cd ~

git clone https://git.beagleboard.org/gsoc/greybus/ccl1352-
—firmware

11. Build the Firmware

west build -b beagleplay_ccl352 -p always ccl352-firmware

12. You can now find the built firmware at build/zephyr/zephyr.bin

Flash

1. Ensure the gb-beagleplay driver isn’t blocking the serial port.

debian@BeaglePlay:~$ echo ” fdtoverlays /overlays/k3-am625-
—beagleplay-bcfserial-no-firmware.dtbo” | sudo tee -a /boot/
—firmware/extlinux/extlinux.conf

debian@BeaglePlay:~$ sudo shutdown -r now

Note: The default password is temppwd.

2. Clone cc1352-flasher

76 Chapter 5. Demos and tutorials

https://git.beagleboard.org/gsoc/greybus/cc1352-firmware

BeaglePlay

cd
git clone https://git.beagleboard.org/beagleconnect/ccl1352-
—~flasher.git

3. Flash Firmware

python S$HOME/ccl352-flasher —--beagleplay SHOME/zephyr-beagle—
—ccl352-sdk/build/zephyr/zephyr.bin

4. Ensure the gb-beagleplay driver is set to load.

sudo sed -e '/bcfserial-no-firmware/ s/“#*/#/' -1 /boot/firmware/
—extlinux/extlinux.conf
sudo shutdown -r now

5.12.2 Building gb-beagleplay Kernel Module

Note: gb-beagleplay is still not merged upstream and thus needs to be built seperately. This should not be
required in the future.

1. Disable bcfserial driver. Add quiet module_blacklist=bcfserial to kernel parameters at
/boot/firmware/extlinux/extlinux.conf (line 2) as shown below.

label Linux eMMC

kernel /Image

append root=/dev/mmcblk0p2 ro rootfstype=ext4 rootwait net.
—ifnames=0 quiet module_blacklist=bcfserial ©

fdtdir /

#fdtoverlays /overlays/<file>.dtbo

#fdtoverlays /overlays/k3-am625-beagleplay-bcfserial-no-firmware.
—dtbo

fdtoverlays /overlays/k3-am625-beagleplay-release-mikrobus.dtbo

initrd /initrd.img

® quiet module_blacklist=bcfserial has been added to this line
1. Reboot

debian@BeaglePlay:~$ sudo shutdown -r now

2. Download the upstream module

debian@BeaglePlay:~$ git clone https://git.beagleboard.org/gsoc/
—greybus/beagleplay—-greybus—-driver.git
debian@BeaglePlay:~$ cd beagleplay-greybus-driver

3. Install dependencies

debian@BeaglePlay:~$ sudo apt install linux-headers-$(uname -r)

4. Build Kernel moudle

debian@BeaglePlay:~/beagleplay—-greybus—-driver$ make
make —-C /lib/modules/5.10.168-ti-arm64-r111/build M=/home/debian/
—beagleplay—-greybus—-driver modules
make[1]: Entering directory '/usr/src/linux-headers-5.10.168-ti-
—armb64-rl1l11'’
CC [M] /home/debian/beagleplay—-greybus-driver/gb-beagleplay.o
MODPOST /home/debian/beagleplay-greybus—-driver/Module.symvers
(continues on next page)

5.12. BeagleConnect™ Greybus demo using BeagleConnect™ Freedom and BeaglePlay 77

BeaglePlay

(continued from previous page)
CC [M] /home/debian/beagleplay—-greybus-driver/gb-beagleplay.

—mod.o
LD [M] /home/debian/beagleplay—-greybus—driver/gb-beagleplay.ko
make[1]: Leaving directory '/usr/src/linux-headers-5.10.168-ti-

—arm64-rl111'

5.12.3 Flashing BeagleConnect Freedom Greybus Firmware

1. Connect BeagleConnect Freedom to BeaglePlay

2. Build the BeagleConnect Freedom firmware

west build -b beagleconnect_freedom modules/greybus/samples/
—subsys/greybus/net/ -p —-— —-DOVERLAY_CONFIG=overlay-802154-subg.
—conf

3. Flash the BeagleConnect Freedom

west flash

5.12.4 Run the Demo

1. Connect BeagleConnect Freedom.

2. See shell output using tio

tio /dev/ACMO

3. Press the Reset button on BeagleConnect Freedom

4. Verify that greybus is working by checking the tio output. It should look as follows:

[00:00:00.000,976] <dbg> greybus_platform bus: greybus_init:.
—probed greybus: 0 major: 0 minor: 1

[00:00:00.001,068] <dbg> greybus_platform string: greybus_string
—~init: probed greybus string 4: hdc2010

[00:00:00.001,129] <dbg> greybus_platform_string: greybus_string_
—~init: probed greybus string 3: opt3001

[00:00:00.001,190] <dbg> greybus_platform_string: greybus_string_
—init: probed greybus string 2: Greybus Service Sample.
—~Application

[00:00:00.001,251] <dbg> greybus_platform_string: greybus_string_
—~init: probed greybus string 1: Zephyr Project RTOS
[00:00:00.001,251] <dbg> greybus_platform_interface: greybus_
—interface_init: probed greybus interface 0

[00:00:00.001,281] <dbg> greybus_platform_bundle: greybus_bundle_
—~init: probed greybus bundle 1: class: 10

[00:00:00.001,312] <dbg> greybus_platform bundle: greybus_bundle_
—init: probed greybus bundle 0: class: O

[00:00:00.001,342] <dbg> greybus_platform_control: greybus_
—control_init: probed cport 0: bundle: 0 protocol: O
[00:00:00.001,434] <dbg> greybus_platform: gb_add_cport_device_
—mapping: added mapping between cport 1 and device gpio@40022000
[00:00:00.001,464] <dbg> greybus_platform gpio_control: greybus_
—~gpio_control_init: probed cport 1: bundle: 1 protocol: 2
[00:00:00.001,556] <dbg> greybus_platform: gb_add_cport_device_
—mapping: added mapping between cport 2 and device sensor-switch
[00:00:00.001,556] <dbg> greybus_platform_i2c_control: greybus_
—~12c_control_init: probed cport 2: bundle: 1 protocol: 3

(continues on next page)

78 Chapter 5. Demos and tutorials

BeaglePlay

(continued from previous page)

*** Booting Zephyr OS build bcf-sdk-0.2.1-3384-ge76584£824c8 ***
[00:00:00.009,704] <dbg> greybus_service: greybus_service_init:.
—~Greybus initializing..

[00:00:00.009,765] <dbg> greybus_manifest: identify_descriptor:.
—cport_id = 0

[00:00:00.009,796] <dbg> greybus_manifest: identify_descriptor:.
—cport_id = 1

[00:00:00.009,826] <dbg> greybus_manifest: identify_descriptor:.
—cport_id = 2

[00:00:00.009,857] <dbg> greybus_transport_tcpip: gb_transport_
—backend_init: Greybus TCP/IP Transport initializing..
[00:00:00.010,101] <inf> greybus_transport_tcpip: CPort 0 mapped.
—~to TCP/IP port 4242

[00:00:00.014,709] <inf> greybus_transport_tcpip: CPort 1 mapped.
—~to TCP/IP port 4243

[00:00:00.014,953] <inf> greybus_transport_tcpip: CPort 2 mapped.
—~to TCP/IP port 4244

[00:00:00.015,075] <inf> greybus_transport_tcpip: Greybus TCP/IP.
—Transport initialized

[00:00:00.015,136] <inf> greybus_manifest: Registering CONTROL.
—greybus driver.

[00:00:00.015,167] <dbg> greybus: _gb_register_driver:.
—Registering Greybus driver on CPO

[00:00:00.015,411] <inf> greybus_manifest: Registering GPIO.
—greybus driver.

[00:00:00.015,411] <dbg> greybus: _gb_register_driver:.
—Registering Greybus driver on CP1

[00:00:00.015,625] <inf> greybus_manifest: Registering I2C.
—greybus driver.

[00:00:00.015,625] <dbg> greybus: _gb_register driver:.
—Registering Greybus driver on CP2

[00:00:00.015,777] <inf> greybus_service: Greybus is active

5. Load gb-beagleplay

debian@BeaglePlay:~$ sudo insmod SHOME/beagleplay-greybus-driver/
—gb-beagleplay.ko

6. Check iio_device to verify that greybus node has been detected:

debian@BeaglePlay:~$ iio_info
Library version: 0.24 (git tag: v0.24)
Compiled with backends: local xml ip usb
ITIO context created with local backend.
Backend version: 0.24 (git tag: v0.24)
Backend description string: Linux BeaglePlay 5.10.168-ti-armé64-
—rl1l1l #lbullseye SMP Tue Sep 26 14:22:20 UTC 2023 aarch64
ITO context has 2 attributes:
local,kernel: 5.10.168-ti-arm64-rl111
uri: local:
ITO context has 2 devices:
iio:deviceO: adcl102s051
2 channels found:
voltagel: (input)
2 channel-specific attributes found:
attr 0: raw value: 4068
attr 1: scale value: 0.805664062
voltageO: (input)
2 channel-specific attributes found:
attr 0: raw value: 0
attr 1: scale value: 0.805664062
(continues on next page)

5.12. BeagleConnect™ Greybus demo using BeagleConnect™ Freedom and BeaglePlay 79

BeaglePlay

(continued from previous page)
No trigger on this device
iio:devicel: hdc2010
3 channels found:
temp: (input)
4 channel-specific attributes found:
attr 0: offset value: -15887.
515151
attr 1: peak_raw value: 28928
attr 2: raw value: 28990
attr 3: scale value: 2.517700195
humidityrelative: (input)
3 channel-specific attributes found:
attr 0: peak_raw value: 43264
attr 1: raw value: 41892
attr 2: scale value: 1.525878906
current: (output)
2 channel-specific attributes found:
attr 0: heater_raw value: 0
attr 1: heater_raw_available.
—value: 0 1
No trigger on this device

5.13 Understanding Boot

There are several phases to BeaglePlay boot. The simplest place to take control of the system is using Distro
Boot. It is simplest because it is very generic, not at all specific to BeaglePlay or AM62, and was included in
the earliest BeagleBoard.org Debian images shipping pre-installed in the on-board flash.

5.13.1 Distro Boot

For some background on distro boot, see the u-boot documentation on distro boot. There is also BeaglePlay
specific u-boot documentation.

In Typical /boot/firmware/extlinux/extlinux.conf file, you can see line 1 provides a label and subsequent in-
dented lines provide parameters for that boot option.

Listing 5.2: Typical /boot/firmware/extlinux/extlinux.conf file

label Linux eMMC

kernel /Image

append root=/dev/mmcblk0p2 ro rootfstype=ext4 rootwait net.ifnames=0.
%quiet

fdtdir /

#fdtoverlays /overlays/<file>.dtbo

initrd /initrd.img

It is important to note that this file is not on the root file system of BeaglePlay. It is sitting on a separate FAT32
partition that is mounted at /boot/firmware. You can see the mounted file systems and their formats in
List of mounted file systems.

The FAT32 partition in this setup is often referred to as the boot file system.

Listing 5.3: List of mounted file systems

debian@BeaglePlay:~$ df

Filesystem 1K-blocks Used Available Use% Mounted on
udev 903276 0 903276 0% /dev
tmpfs 197324 1524 195800 1% /run

(continues on next page)

80 Chapter 5. Demos and tutorials

https://docs.u-boot.org/en/latest/develop/distro.html
https://docs.u-boot.org/en/latest/board/beagle/am62x_beagleplay.html
https://docs.u-boot.org/en/latest/board/beagle/am62x_beagleplay.html

BeaglePlay

(continued from previous page)
/dev/mmcblk0p2 14833640 12144024 1914296 87% /

tmpfs 986608 0 986608 0% /dev/shm

tmpfs 5120 4 5116 1% /run/lock
/dev/mmcblkOpl 130798 53214 77584 41% /boot/firmware
tmpfs 197320 32 197288 1% /run/user/1000
debian@BeaglePlay:~$ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

mmcblkO0 179:0 0 14.6G 0 disk

FmmcblkOpl 179:1 0 128M 0 part /boot/firmware

L mmcblk0p2 179:2 0 14.5G6 0 part /

mmcblkOboot0 179:256 O 4M 1 disk

mmcblkObootl 179:512 0 4M 1 disk

debian@BeaglePlay:~$ sudo sfdisk -1 /dev/mmcblk0

Disk /dev/mmcblkO: 14.6 GiB, 15678308352 bytes, 30621696 sectors
Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: Oxba67172a

Device Boot Start End Sectors Size Id Type
/dev/mmcblkOpl * 2048 264191 262144 128M ¢ W95 FAT32 (LBA)
/dev/mmcblk0p2 264192 30621695 30357504 14.5G 83 Linux

To better understand BeaglePlay’s U-Boot Distro Boot, let’s install a Linux kernel and initramfs from the Build-
root project. There is a pre-built image release at https://git.beagleboard.org/beagleboard/buildroot/-/releases/
2023.11-beaglel.

Currently, the Linux kernel image needs to be uncompressed and stored in the FAT32 file system. An initramfs
image is a simple way to provide a starting root file system. When running Linux, some kind of root file system
is required.

An initramfs image is utilized on Debian systems to make sure any kernel modules needed are available and
to provide a bit of a recovery opportunity in case the root file system is corrupted. You can learn more about
initramfs and initrd on the Debian Initrd Wiki page <https://wiki.debian.org/Initrd> and the Linux kernel docu-
mentation admin guide initrd entry <https://docs.kernel.org/admin-guide/initrd.html>.

In the case of utilizing Buildroot, the entire Linux distribution is incorporated into the initramfs root file system
image.

The contents of the initrd can be read using 1sinitramfs /boot/firmware/initrd.img.

Listing 5.4: Copy kernel to FAT32 filesystem

debian@BeaglePlay:~$ wget https://git.beagleboard.org/beagleboard/buildroot/-/
—jobs/19194/artifacts/raw/public/beagleplay/images/Image

-—2023-12-19 22:17:54-—- https://git.beagleboard.org/beagleboard/buildroot/—/
—Jjobs/19194/artifacts/raw/public/beagleplay/images/Image

Resolving git.beagleboard.org (git.beagleboard.orqg)... 44.226.162.25
Connecting to git.beagleboard.org (git.beagleboard.orqg) [44.226.162.25]|:443...
— connected.

HTTP request sent, awaiting response... 200 OK

Length: 32172544 (31M) [application/octet—stream]

Saving to: ‘Image’

Image 100% [>] 30.68M 1.78MB/s in 18s
2023-12-19 22:18:13 (1.74 MB/s) - ‘Image’ saved [32172544/32172544]

debian@BeaglePlay:~$ sudo cp Image /boot/firmware/Image-buildroot

[sudo] password for debian:

debian@BeaglePlay:~$ wget https://git.beagleboard.org/beagleboard/buildroot/—-/
(continues on next page)

5.13. Understanding Boot 81

http://buildroot.org/
http://buildroot.org/
https://git.beagleboard.org/beagleboard/buildroot/-/releases/2023.11-beagle1
https://git.beagleboard.org/beagleboard/buildroot/-/releases/2023.11-beagle1
https://en.wikipedia.org/wiki/Linux_distribution

10

11

12

13

14

15

16

BeaglePlay

(continued from previous page)

—Jobs/19194/artifacts/raw/public/beagleplay/images/rootfs.cpio.gz
—--2023-12-19 22:16:44-- https://git.beagleboard.org/beagleboard/buildroot/—-/
—Jjobs/19194/artifacts/raw/public/beagleplay/images/rootfs.cpio.gz

Resolving git.beagleboard.org (git.beagleboard.orqg)... 44.226.162.25
Connecting to git.beagleboard.org (git.beagleboard.orqg) [44.226.162.25]:443...
— connected.

HTTP request sent, awaiting response... 200 OK

Length: 30111086 (29M) [application/octet-stream]

Saving to: ‘rootfs.cpio.gz’

rootfs.cpio.gz 100% [===== = = >] 28.72M 21.5MB/s in 1.3s
2023-12-19 22:16:46 (21.5 MB/s) - ‘rootfs.cpio.gz’ saved [30111086/30111086]

debian@BeaglePlay:~$ sudo cp rootfs.cpio.gz /boot/firmware/rootfs.cpio.gz-
—buildroot

Listing 5.5: Modified /boot/firmware/extlinux/extlinux.conf file

menu title Select image to boot
timeout 10
default Buildroot

label Debian

kernel /Image

append root=/dev/mmcblk0p2 ro rootfstype=extd rootwait net.ifnames=0.
—quiet

fdtdir /

#fdtoverlays /overlays/<file>.dtbo

initrd /initrd.img

label Buildroot
kernel /Image-buildroot
append rootwait net.ifnames=0 quiet
fdtdir /
initrd /rootfs.cpio.gz-buildroot

Listing 5.6: Reboot into modified kernel and rootfs

debian@BeaglePlay:~$ sudo shutdown —-r now

Connection to 192.168.0.117 closed by remote host.

Connection to 192.168.0.117 closed.

jkridner@slotcar:~$ sudo nmap -n -p 22 192.168.0.0/24

Starting Nmap 7.94SVN (https://nmap.org) at 2023-12-19 17:32 EST

PORT STATE SERVICE
22/tcp open ssh
MAC Address: 50:3E:AA:AD:78:06 (TP-Link Technologies)

Nmap scan report for 192.168.0.112
Host is up (0.00020s latency).

jkridner@slotcar:~$ ssh root@192.168.0.112
The authenticity of host '192.168.0.112 (192.168.0.112)"' can't be.
—~established.
ED25519 key fingerprint is.
— SHA256 : EZdvLkCNMyhy4RhvseUSC5EwaJR5Kgpk8JZGIkF +pmk .
This key is not known by any other names.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '192.168.0.112' (ED25519) to the list of known.
—hosts.

(continues on next page)

82 Chapter 5. Demos and tutorials

BeaglePlay

(continued from previous page)

root@192.168.0.112"'s password:

uname -a

Linux BeaglePlay 6.6.3 #1 SMP Tue Dec 19 21:32:06 UTC 2023 aarch64 GNU/Linux
cat /etc/os-release

NAME=BRuildroot

VERSION=2023.11-beaglel

ID=buildroot

VERSION_ID=2023.11

PRETTY_NAME="Buildroot 2023.11"

5.13.2 Booting U-Boot

Listing 5.7: Install bootloader to eMMC
#!/bin/bash

if ! id | grep —gq root; then
echo "must be run as root”
exit

fi

wdir="/opt/u-boot/bb-u-boot-beagleplay”

if [-b /dev/mmcblk0] ; then
#mmc extcsd read /dev/mmcblk0
mmc bootpart enable 1 2 /dev/mmcblkO
mmc bootbus set single_backward x1 x8 /dev/mmcblkO
mmc hwreset enable /dev/mmcblkO

echo ”"Clearing eMMC boot0”
echo '0' >> /sys/class/block/mmcblkOboot0/force_ro

echo ”"dd if=/dev/zero of=/dev/mmcblk0boot0 count=32 bs=128k”
dd if=/dev/zero of=/dev/mmcblkOboot0 count=32 bs=128k

echo ”"dd if=${wdir}/tiboot3.bin of=/dev/mmcblkOboot0 bs=128k”
dd if=S{wdir }/tiboot3.bin of=/dev/mmcblkOboot0 bs=128k
fi

install—-emmc.sh

5.14 Smart energy efficient video doorbell

1. Intelligent camera streaming and recording at 640x480 resolution and 30 FPS with power saving.
2. Detect user activity using an external button/sensor and configure it as a wake-up source

3. Application should start streaming on wakeup event, pause on system suspend and resume back seam-
lessly thus saving power while system was in suspended state.

Give options to enable below functionalities:
* Stream Live camera feed when visitor activity is detected
¢ On-the-fly recording of live camera feed with a timeout to record visitor activity

¢ On-the-fly streaming of live camera feed to remote server for post processing/storage or display.

5.14. Smart energy efficient video doorbell 83

BeaglePlay

Fig. 5.24: https://youtu.be/4jbOXI_o4uo

5.14.1 About deep sleep

Deep Sleep AKA Suspend-to-RAM is a low-power mode that allows an embedded device to retain its state in
RAM while the processor is turned off. This can save a significant amount of power, especially in devices that
are battery-powered.

The benefits of using deep sleep in embedded devices are faster wake-up time and better efficiency.

Tip: Checkout kernel docs on power states

5.14.2 Hardware requirements

1. BeaglePlay board
A CSI MIPI camera like TEVI-OV5640 or a USB web-cam
HDMI monitor & HDMI cable

Ethernet cable and a laptop/desktop with an Ethernet port

v W N

A Grove PIR sensor or a Grove button

5.14.3 Software requirements

First, make sure that you have the latest U-Boot which packages the right firmwares to make deep sleep work
on beagleplay. You will also need to use ti-linux-kernel for basic suspend-to-RAM because the patches are yet
to make it into upstream.

You can always use Robert Nelson’s latest default debian images which should come with the right uboot and
kernel required.

84 Chapter 5. Demos and tutorials

https://youtu.be/4jbOXl_o4uo
https://www.kernel.org/doc/Documentation/power/states.txt
https://www.beagleboard.org/boards/beagleplay
https://www.technexion.com/products/embedded-vision/image-sensors/tevi-ov5640/
https://wiki.seeedstudio.com/Grove-PIR_Motion_Sensor/

BeaglePlay

On debian, you may also need to make sure you have gstreamer installed, refer to https://gstreamer.
freedesktop.org/documentation/installing/on-linux.html?gi-language=c for further details on how to install
gstreamer.

5.14.4 Devicetree changes

You will need to tell Linux what your wakeup source is going to be, it can be a simple button or even a PIR
sensor. To do this you'll need to make the following changes to the k3-am625-beagleplay.dts:

diff --git a/arch/armé64/boot/dts/ti/k3-am625-beagleplay.dts b/arch/armé4/boot/
—dts/ti/k3-am625-beagleplay.dts
index b3328ae24b5f..9%9a83102e3604 100644
-—- a/arch/armé64/boot/dts/ti/k3-am625-beagleplay.dts
+++ b/arch/armé64/boot/dts/ti/k3-am625-beagleplay.dts
Q@ -166,6 +166,20 @R vdd_sd_dv: regulator-5 {
<3300000 0x1>;
bi

motion_gpio_key {
compatible = "gpio-keys”;
autorepeat;
pinctrl-names = "default”;
pinctrl-0 = <&grove_pins_default>;
switch {
label = "senseGPIO”;
linux, code = <KEY_WAKEUP>;
interrupts-extended = <&main_gpiol 28 IRQ_TYPE_EDGE_

+ + + o+ o+ +

SRISING>,
<&main_pmx0 0xle8>;
interrupt-names = "irqg”, "wakeup”;
ti
bi

+ + 4+ + +

leds {
compatible = "gpio-leds”;

The above will help us configure the grove connector’s GPIO to act as a wakeup source from Deep Sleep.

If using the CSI MIPI camera like tevi-ov5640 then, be sure to also apply the respective overlay, for tevi-ov5640
apply k3—-am625-beagleplay-csi2-tevi-ov5640.dtbo overlay.

The Technexion TEVI-OV5640 module supports Suspend-to-RAM but may fail to set the sensor registers in time
when built as a module. You can fix this by making it a part of the kernel image: Find further details in the
TI-SDK Documentation

Todo: Add the below changes to the beagle defconfig

diff --git a/arch/armé64/configs/defconfig b/arch/armé64/configs/defconfig
index 1£402994efed..0£f081e5£96cl 100644

—-—— a/arch/armé64/configs/defconfig

+++ b/arch/armé64/configs/defconfig

@@ -739,14 +739,14 @R CONFIG_RC_DECODERS=y

CONFIG_RC_DEVICES=y

CONFIG_IR_MESON=m

CONFIG_IR_SUNXTI=m

—CONFIG_MEDIA_SUPPORT=m

+CONFIG_MEDIA_SUPPORT=y

CONFIG_DVB_NET is not set

CONFIG_MEDIA_USB_SUPPORT=y

CONFIG_USB_VIDEO_CLASS=m

(continues on next page)

5.14. Smart energy efficient video doorbell 85

https://gstreamer.freedesktop.org/documentation/installing/on-linux.html?gi-language=c
https://gstreamer.freedesktop.org/documentation/installing/on-linux.html?gi-language=c
https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/09_01_00_08/exports/docs/linux/Foundational_Components/Kernel/Kernel_Drivers/Camera/CSI2RX.html#suspend-to-ram

BeaglePlay

(continued from previous page)

CONFIG_VA4L_PLATFORM_DRIVERS=y
CONFIG_SDR_PLATFORM_DRIVERS=y
CONFIG_V4L_MEM2MEM DRIVERS=y
—CONFIG_VIDEO_CADENCE_CSI2RX=m
+CONFIG_VIDEO_CADENCE_CSI2RX=y
CONFIG_VIDEO_WAVE_VPU=m
CONFIG_VIDEO_IMG_VXD_DEC=m
CONFIG_VIDEO_IMG_VXE_ENC=m

@@ -764,12 +764,12 @R CONFIG_VIDEO_SAMSUNG_EXYNOS_GSC=m
CONFIG_VIDEO_SAMSUNG_S5P_JPEG=m
CONFIG_VIDEO_SAMSUNG_S5P_MFC=m
CONFIG_VIDEO_SUN6I_CSI=m
—~CONFIG_VIDEO_TI_J721E_CSI2RX=m
+CONFIG_VIDEO_TI_J721E_CSI2RX=y
CONFIG_VIDEO_HANTRO=m
CONFIG_VIDEO_IMX219=m
CONFIG_VIDEO_IMX390=m
CONFIG_VIDEO_OV2312=m
—CONFIG_VIDEO_OV5640=m
+CONFIG_VIDEO_OV5640=y
CONFIG_VIDEO_OV5645=m
CONFIG_VIDEO_DS90UB953=m
CONFIG_VIDEO_DS90UB960=m

@@ -1309,8 +1309,8 @R CONFIG_PHY XGENE=y
CONFIG_PHY_ CAN_TRANSCEIVER=m
CONFIG_PHY_ SUN4I_USB=y
CONFIG_PHY CADENCE_TORRENT=y
—CONFIG_PHY_CADENCE_DPHY=m
—CONFIG_PHY CADENCE_DPHY RX=m
+CONFIG_PHY CADENCE_DPHY=y
+CONFIG_PHY CADENCE_DPHY RX=y
CONFIG_PHY_CADENCE_SIERRA=y
CONFIG_PHY MIXEL_MIPI_DPHY=m
CONFIG_PHY FSL_IMX8M_PCIE=y

5.14.5 Linux commands

Once your hardware, software and devicetree changes are all set, and you boot till linux prompt we can finally
start with the final bit. The below section describes various gstreamer pipelines created using sample gst-
launch-1.0 gstreamer application. You can create your own gstreamer application too with some dynamic
features, customized options taking referece from these pipelines.

Note: |If using CSI based TEVI-OV5640 module, you need to also set the mediagraph prior to using camera.
You can set set the media graph and sanity test the camera using below command which uses cam tool from
libcamera:

cam -cl —--stream width=640,height=480, pixelformat=UYVY -C20

Additionally, if using a different camera, you can check the supported resolutions and video formats using
below command:

v41l2-ctl --all -d /dev/videoX (where X is your video node number e.g. /dev/
—video0)

There are two sets of gstreamer pipelines that get run in this demo one at server side i.e. on beagleplay board
directly which captures and displays the camera feed and streams it to the remote or client side, and the other
at client side itself which receives the camera feed, records it, decodes it and displays it using the remote host
machine.

86 Chapter 5. Demos and tutorials

BeaglePlay

Server side gstreamer pipeline (on beagleplay board):

Here, you can run either of the below two sets of gstreamer pipeline depending upon your requirement :

Display live camera feed

Pipeline topology

v4l2src ——> kmssink

Gstreamer Pipeline

#Stop weston if using kmssink

systemctl stop weston.service

gst-launch-1.0 -v v4l2src io-mode=dmabuf device="/dev/video0” ! video/x-raw,.
—width=640, height=480, format=YUY2 ! kmssink driver—-name=tidss force—
—modesetting=true sync=false async=false

Note: Change the video format to UYVY if using CSI based ov5640 camera

Description The Linux kernel uses V4L2 based driver for Camera and DRM/KMS based driver for Display,
Gstreamer has v4l2src element to communicate with V4I2’s based driver and kmssink element to talk with
display driver and using above command, we can create a media pipeline which shares video buffers from
camera to display using DMA to transfer the buffer. This is specified using io-mode property of v4l2src. By
default display server i.e weston is in charge of controlling the display, so it needs to be disabled if we want
to control the display directly. We also use kmssink’s force-modesetting property to set the display mode to
the camera resolution and have a full screen display. If using a graphics server involving GPU, one can use
waylandsink (which uses weston as display server), glimagesink (which uses opengl API) or ximagesink (which
uses Xorg as display server) depending upon the display server.

Display live camera feed + Stream out to remote server

Pipeline topology

.——>kmssink
v4dl2src ——> tee——|
.——>x264enc-—>rtph264pay-—->udpsink

Gstreamer pipeline

#Stop weston if using kmssink

systemctl stop weston.service

gst-launch-1.0 -v v4l2src io-mode=dmabuf device="/dev/video0” ! video/x-raw,.
—width=640, height=480, format=YUY2 ! queue ! tee name=t t. ! queue !_
—kmssink driver—-name=tidss force-modesetting=true sync=false async=false t..
—! queue ! ticolorconvert ! queue ! x264enc speed-preset=superfast key-int-
—max=30 tune=zerolatency bitrate=25000 ! queue ! rtph264pay config-
—interval=30 ! udpsink sync=false port=5000 host=192.168.0.2 async=false &

Note: Change the video format to UYVY if using CSI based ov5640 camera

5.14. Smart energy efficient video doorbell 87

BeaglePlay

Description Here we use gstreamer’s tee element to split the media pipeline graph into two arms, one arm
is used to display the camera feed on-screen (which is same as the one described in previous section) and
other arm is used to encode the camera feed and stream it to remote server. We use libx264 based x264enc
element to encode the raw video to H.264 based access units. However x264enc does not support YUY2 video
format, so we use ticolorconvert element to convert the video format to the one supported by the encoder, this
element is CPU based but it uses ARM neon based instructions underneath for faster conversion. The x264enc
element also offers different parameters to fine tune the encoding. We use superfast speed preset along with
zerolatency tuning as we want to strem in realtime with minimal latency. We set IDR or key frame interval to
30 frames using key-int-max property. The IDR frame is important from streaming point of view as it marks
arrival of fresh group of pictures without any dependencies to previous frames so that decoding at client side
can resume back seamlessly even if there were packet losses in between due to network issues. However the
value needs to be carefully chosen as the trade-off with higher frequency of IDR frames though is the increase
in size of rtp payload which may consume more bandwidth. The video quality of encoded stream is controleld
by bitrate parameter which specifies number of Kbits used for encoding video for 1s. Higher value for bitrate
will increase the video quality albeit at the cost of increased size. The encoded frame is then packetized
into RTP packets using rtph264pay element and transmitted over network using UDP protocol using udpsink
element. The ip address and port number of remote host are specified using “host” and “port” property of
udpsink element respectively.

This gstreamer pipeline is useful for prototyping use-case where you not just want to display the camera feed
outside the door when some visitor comes, but also want to stream out to a remote server (for e.g. security
control rool or to your mobile device) for more safety.

Display live camera feed + Stream out to remote server+ Record camera feed

Pipeline topology

.——>kmssink
v4l2src ——> tee——| .——filesink
.——>x264enc——>tee——|
.——rtph264pay—-—>udpsink

Gstreamer pipeline

#Stop weston if using kmssink

systemctl stop weston.service

gst—launch-1.0 -v v41l2src io-mode=dmabuf device="/dev/video0” ! video/x-raw, .
—width=640, height=480, format=YUY2 ! queue ! tee name=t t. ! queue !.
—kmssink driver-name=tidss force-modesetting=true sync=false async=false t..
—! queue ! ticolorconvert ! x264enc speed-preset=superfast key-int-max=30._
—bitrate=5000 ! queue ! tee name=tl tl. ! queue ! rtph264pay config-
—interval=60 ! udpsink port=5000 host=192.168.0.2 sync=false async=false tl.
— ! queue ! filesink location="op.h264”

Note: Change the video format to UYVY if using CSI based ov5640 camera

Description In addition to the media topology described in previous section, one more tee element is added
here to save the encoded file over user-specified storage media. This could be helpful to have the camera feed
of all the visitors (or potential intruders :)) recorded at the device end itself for future reference/analysis or
as a blackbox recording. However care needs to be taken to constantly backup the recorded stream so that
storage media does not run out of space.

Client side gstreamer pipeline (runs on remote host):

The previous section described how the camera feed is displayed and streamed out to remote server using
RTP and UDP protocols. Here we will discuss about how we can receive the transmitted stream and display it

88 Chapter 5. Demos and tutorials

BeaglePlay

or record it. We use X86_64 based Ubuntu machine as remote host here.

Display camera feed received over network

Pipeline topology

udpsrc —-—-> rtpjitterbuffer-->rtph264depay-->h264parse-->avdec_h264-->
—xvimagesink

Gstreamer pipeline

This is the IP address of the remote host which is specified in the server.
—pipelien running on beagleplay

sudo ifconfig enp2s0 192.168.0.2

gst—-launch-1.0 udpsrc port=5000 caps = "application/x-rtp, .
—media=(string)video, clock-rate=(int) 90000, encoding-name=(string)H264,._
—payload=(int) 96” ! rtpjitterbuffer latency=50 ! rtph264depay ! h264parse !._
—avdec_h264 ! queue ! fpsdisplaysink text-overlay=false name=fpssink video-—
—sink="xvimagesink sync=false” sync=false -v

Description The above gstreamer pipeline uses udpsrc element which reads UDP packets from the network,
listening on the specified port (5000) and provide RTP packets to downstream element. rtpjitterbuffer element
is used to buffer the incoming RTP packets to help reduce the impact of network jitter on smoothness of video.
The bufferring is set to 50ms using latency property of rtpjitterbuffer, the value should be chosen optimally as
tradeoff of choosing higher value is protection against network jitter maintaining the smoothness of pipeline
but a higher value also increases the glass-to-glass latency. rtph264depay element is used to depacketize
the H264 payload from RTP packets and feed send it to h264parse which parses it and provides access unit-
by-access unit byte-stream to avdec_h264 which is a libav based software decoding element to decode H264
stream to raw video. fpsdisplaysink element is used along with xvimagesink (X11 backend) as video-sink to
display overall frame-rate of the pipeline. If using weston as display server then waylandsink should be used
as video-sink instead.

Display camera feed received over network + record incoming stream

Pipeline topology

.——>avdec_h264——
—>xvimagesink
udpsrc ——> rtpjitterbuffer-->rtph264depay-—->h264parse-—>tee——|

.——>filesink

Gstreamer pipeline

This is the IP address of the remote host which is specified in the server.
—pipelien running on beagleplay

sudo ifconfig enp2s0 192.168.0.2

gst—-launch-1.0 udpsrc port=5000 caps = "application/x-rtp, .
—media=(string)video, clock-rate=(int) 90000, encoding-name=(string)H264,.

—payload=(int) 96” ! rtpjitterbuffer latency=50 ! rtph264depay ! h264parse !.
—~video/x-h264, stream-format=byte-stream ! tee name=t t. ! queue ! filesink.
—location="op.h264” t. ! queue ! avdec_h264 ! queue ! fpsdisplaysink text-

—~overlay=false name=fpssink video-sink="xvimagesink sync=false” sync=false -
—V

5.14. Smart energy efficient video doorbell 89

BeaglePlay

Description This is same as pipeline described in previous section albeit with the extra addition of tee ele-
ment which adds another arm to save the decoded video over a file on the host machine.

2. Let the above pipelines run in the background and then to suspend the device (beagleplay):

echo mem > /sys/power/state

3. Then, if you press the button/ trigger PIR sensor with some movement it should bring the device back
up and you will see the video resume almost instantly on both the server side and client side. This
is because underlying software stack also involving video and display related drivers support system
suspend/resume, thus helping the application to resume seamlessly.

4. Additionally, you can enable auto suspend for the device by using a simple systemd service. Follow the
guide here to see how to create and enable a script as a systemd service. The script that | used was as
follows:

#!/bin/bash

while true
do
sleep 15 # Adjust this time to whatever delay you prefer the device.
—stays on after resume
echo "Entering Suspend to RAM...”
echo mem > /sys/power/state
done

5.14.6 Resources

1. https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/09 02 01 09/exports/docs/linux/
Foundational_Components/Kernel/Kernel_Drivers/Power_Management/pm_low_power_modes.html#
deep-sleep

2. https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/09 02 01 09/exports/docs/linux/
Foundational_Components/Kernel/Kernel_Drivers/Camera/CSI2RX.html

90 Chapter 5. Demos and tutorials

https://tecadmin.net/run-shell-script-as-systemd-service/
https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/09_02_01_09/exports/docs/linux/Foundational_Components/Kernel/Kernel_Drivers/Power_Management/pm_low_power_modes.html#deep-sleep
https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/09_02_01_09/exports/docs/linux/Foundational_Components/Kernel/Kernel_Drivers/Power_Management/pm_low_power_modes.html#deep-sleep
https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/09_02_01_09/exports/docs/linux/Foundational_Components/Kernel/Kernel_Drivers/Power_Management/pm_low_power_modes.html#deep-sleep
https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/09_02_01_09/exports/docs/linux/Foundational_Components/Kernel/Kernel_Drivers/Camera/CSI2RX.html
https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/09_02_01_09/exports/docs/linux/Foundational_Components/Kernel/Kernel_Drivers/Camera/CSI2RX.html

Chapter 6

Support

All support for BeaglePlay design is through BeagleBoard.org community at BeagleBoard.org forum.

6.1 Production board boot media

* BeaglePlay Rev A2

6.2 Certifications and export control

6.2.1 Export designations

» HS: 8471504090
* US HS: 8473301180
* EU HS: 8471707000

6.2.2 Size and weight

¢ Bare board dimensions: 82.5 x 80 x 20 mm

* Bare board weight: 55.3 g

Full package dimensions: 140 x 100 x 40 mm

Full package weight: 125.3 g

6.3 Additional documentation

6.3.1 Hardware docs

For any hardware document like schematic diagram PDF, EDA files, issue tracker, and more you can checkout
the BeaglePlay design repository.

6.3.2 Software docs

For BeaglePlay specific software projects you can checkout all the BeaglePlay project repositories group.

91

https://forum.beagleboard.org/tag/play
https://www.beagleboard.org/distros/beagleplay-rev-a2
https://git.beagleboard.org/beagleplay/beagleplay
https://git.beagleboard.org/beagleplay

BeaglePlay

6.3.3 Support forum

For any additional support you can submit your queries on our forum, https://forum.beagleboard.org/tag/play

6.3.4 Pictures

6.4 Change History

Note: This section describes the change history of this document and board. Document changes are not
always a result of a board change. A board change will always result in a document change.

6.4.1 Board Changes

For all changes, see https://git.beagleboard.org/beagleplay/beagleplay. Versions released into production are
noted below.

Table 6.1: BeaglePlay board change history

Rev Changes Date By

A2 Initial production version 2023-03-08 JK

92 Chapter 6. Support

https://forum.beagleboard.org/tag/play
https://git.beagleboard.org/beagleplay/beagleplay

	Introduction
	Detailed overview
	AM6254 SoC
	Board components location

	Quick Start Guide
	What’s included in the box?
	Attaching antennas
	Tethering to PC
	Access VSCode
	USB
	Access Point

	Demos and Tutorials

	Design and specifications
	Block diagram
	System on Chip (SoC)
	Power management
	1.0V LDO
	3.3V DCDC buck
	PMIC

	General Connectivity and Expansion
	USB A & USB C
	2ch 10bit ADC
	mikroBUS
	Grove
	QWIIC

	Buttons and LEDs
	Buttons
	LEDs

	Wired and wireless connectivity
	Gigabit ethernet
	Single pair ethernet
	WiFi 2.4G/5G
	BLE & SubGHz

	Memory, Media and Data storage
	DDR4
	eMMC/SD
	microSD Card
	Board EEPROM

	Multimedia I/O
	HDMI
	OLDI
	CSI

	RTC & Debug
	RTC
	UART Debug Port
	AM62x JTAG & TagConnect
	CC1352 JTAG & TagConnect

	Mechanical Specifications
	Dimensions & Weight

	Expansion
	mikroBUS
	Grove
	QWIIC
	CSI
	OLDI

	Demos and tutorials
	Using Serial Console
	Connect WiFi
	BeaglePlay WiFi Access Point
	Step 1. Connect to BeaglePlay-XXXX
	Step 2. Browse to 192.168.8.1

	wpa_gui
	Step 1: Starting wpa_gui
	Step 2: Understanding wpa_gui interface
	Step 3: Scanning & Connecting to WiFi access points

	wpa_cli (shell)
	wpa_cli (XFCE)
	Step 1: Open up terminal
	Step 2: Setup credentials
	Step 3: Reconfigure wlan0

	Disabling the WIFI Access Point
	Re-Enabling the WIFI Access Point

	Using Grove
	Using mikroBUS
	Using boards with ClickID
	What is mikroBUS?
	What is ClickID?
	Does my add-on have ClickID?
	What if my add-on doesn’t have ClickID?
	What if my add-on has invalid manifest entries?
	Accel Click Board Example

	Using boards with Linux drivers
	IIO driver
	Storage driver
	Network driver

	How does ClickID work?
	Disabling the mikroBUS driver

	Using QWIIC
	OLED Display using QWIIC
	Wiring/Connection
	Using Python libraries to display on OLED.

	Using Node-RED
	Pre-requisites
	Node-RED
	MikroE
	Let’s get started!
	Connecting mikroBUS™ add-on board
	Accessing Node-RED
	Creating a basic flow
	Adding a Gauge
	Adding a Graph and 3 Axis

	Using RTC
	Understanding multiple rtc devices
	Get the current time, timezone, and other settings
	Setting the timezone
	Enable ntp
	Setting the time manually
	Using rtcwake to sleep

	Using OLDI Displays
	Using CSI Cameras
	Wireless MCU Zephyr Development
	Install the latest software image for BeaglePlay
	Log into BeaglePlay
	Flash existing IEEE 802.15.4 radio bridge (WPANUSB) firmware
	Background
	Steps

	Setup Zephyr development on BeaglePlay
	Build applications for BeaglePlay CC1352
	Build applications for BeagleConnect Freedom
	Flash applications to BeagleConnect Freedom
	Debug applications over the serial terminal

	BeaglePlay Kernel Development
	Getting the Kernel Source Code
	Preparing to Build
	Configuring the Kernel
	Building the Kernel
	Installing and Booting the Kernel
	Kernel Debug
	References

	BeagleConnect™ Greybus demo using BeagleConnect™ Freedom and BeaglePlay
	BeaglePlay CC1352 Firmware
	Build (Download and Setup Zephyr for BeaglePlay)
	Flash

	Building gb-beagleplay Kernel Module
	Flashing BeagleConnect Freedom Greybus Firmware
	Run the Demo

	Understanding Boot
	Distro Boot
	Booting U-Boot

	Smart energy efficient video doorbell
	About deep sleep
	Hardware requirements
	Software requirements
	Devicetree changes
	Linux commands
	Server side gstreamer pipeline (on beagleplay board):
	Display live camera feed
	Pipeline topology
	Gstreamer Pipeline
	Description

	Display live camera feed + Stream out to remote server
	Pipeline topology
	Gstreamer pipeline
	Description

	Display live camera feed + Stream out to remote server+ Record camera feed
	Pipeline topology
	Gstreamer pipeline
	Description

	Client side gstreamer pipeline (runs on remote host):
	Display camera feed received over network
	Pipeline topology
	Gstreamer pipeline
	Description

	Display camera feed received over network + record incoming stream
	Pipeline topology
	Gstreamer pipeline
	Description

	Resources

	Support
	Production board boot media
	Certifications and export control
	Export designations
	Size and weight

	Additional documentation
	Hardware docs
	Software docs
	Support forum
	Pictures

	Change History
	Board Changes

