
BeagleV-Fire

BeagleBoard.org Foundation
Oct 29, 2025

Table of contents

1 Introduction 3
1.1 Pinout Diagrams . 3
1.2 Detailed overview . 6
1.3 Board components location . 6

1.3.1 Front components location . 6
1.3.2 Back components location . 7

2 Quick Start 9
2.1 What’s included in the box? . 9
2.2 Unboxing . 9
2.3 Tethering to PC . 9
2.4 Flashing eMMC . 9

2.4.1 Device Firmware Update (DFU) . 11
2.4.2 BeagleBoard Imager . 11

2.5 Access UART debug console . 11
2.6 Demos and Tutorials . 12

3 Design & specifications 13
3.1 Block diagram . 13
3.2 System on Chip (SoC) . 14
3.3 Power management . 14
3.4 General Connectivity and Expansion . 14

3.4.1 USB-C port . 14
3.4.2 P8 & P9 cape header pins . 14
3.4.3 ADC . 14

3.5 Buttons and LEDs . 14
3.5.1 User LEDs and Power LED . 14
3.5.2 User and reset button . 14

3.6 Connectivity . 14
3.6.1 Ethernet . 14

3.7 Memory, Media and Data storage . 17
3.7.1 DDR memory . 17
3.7.2 eMMC . 17
3.7.3 microSD . 17
3.7.4 EEPROM . 17
3.7.5 SPI flash . 17

3.8 Multimedia I/O . 17
3.8.1 CSI . 17

3.9 Debug . 17
3.9.1 UART debug port . 17
3.9.2 JTAG debug port . 17

3.10 Mechanical Specifications . 21

4 Expansion 29
4.1 Cape Headers . 29

4.1.1 Connector P8 . 29
4.1.2 Connector P9 . 33

i

5 Demos 37
5.1 Upgrade BeagleV-Fire Gateware . 37

5.1.1 Required Equipment . 37
5.1.2 Connect to BeagleV-Fire Linux Command Line Interface 37
5.1.3 Gateware Upgrade Linux Commands . 38

5.2 Flashing gateware and Linux image . 39
5.2.1 Programming & Debug tools installation . 39
5.2.2 Flashing gateware image . 40
5.2.3 Flashing eMMC . 41

5.3 Microchip FPGA Tools Installation Guide . 46
5.3.1 Install Libero . 47
5.3.2 Install SoftConsole 2022.2 . 47
5.3.3 Install the Libero licensing daemon . 47
5.3.4 Request a Libero Silver license . 48
5.3.5 Execute tool setup script . 48

5.4 Gateware Design Introduction . 50
5.4.1 Gateware Architecture . 50

5.5 How to retrieve BeagleV-Fire’s gateware version . 53
5.5.1 Device Tree . 53
5.5.2 Bootloader messages . 53

5.6 Building Linux for BeagleV-Fire using Buildroot . 54
5.6.1 Introduction . 54
5.6.2 Start Building . 54

5.7 Gateware Full Build Flow . 56
5.7.1 Introduction . 56
5.7.2 Programming artifacts . 56
5.7.3 Programming BeagleV-Fire with new gateware . 57

5.8 Gateware TCL Scripts Structure . 58
5.8.1 Gateware Project . 58
5.8.2 Gateware Components . 58
5.8.3 Gateware Build Options . 58
5.8.4 Gateware Component Directories . 60
5.8.5 Opening the gateware as a libero project . 61

5.9 Customize BeagleV-Fire Cape Gateware Using Verilog . 61
5.9.1 Fork BeagleV-Fire Gateware Repository . 61
5.9.2 Create A Custom Gateware Build Option . 62
5.9.3 Rename A Copy Of The Cape Gateware Verilog Template 62
5.9.4 Customize The Cape’s Verilog Source Code . 63
5.9.5 Commit And Push Changes To Your Forked Repository 65
5.9.6 Retrieve The Forked Repositories Artifacts . 66
5.9.7 Program BeagleV-Fire With Your Custom Bitstream . 66

5.10 How to use PicoRV Softcore on BeagleV-Fire . 67
5.10.1 Introduction . 67
5.10.2 Prerequisites . 67
5.10.3 How to use the Softcore . 67

5.11 How to build the BeagleV-Fire Gateware on Windows . 69
5.11.1 Introduction . 69
5.11.2 Prerequisites . 69

5.12 Exploring Gateware Design with Libero . 70
5.12.1 Prerequisites . 70
5.12.2 Cloning and Building the Gateware . 71
5.12.3 Exploring The Design . 72
5.12.4 Adding Custom HDL . 73
5.12.5 Exporting The Design . 77
5.12.6 Final Verification . 79

5.13 Simulating Gateware Design with Libero . 81
5.13.1 Prerequisites . 81
5.13.2 Setting up ModelSim . 82

ii

5.13.3 Simulating the Blinky LED Design . 82
5.13.4 Exploring ModelSim and Running the simulations . 83

5.14 Comms Cape Gateware for BeagleV-Fire . 85
5.14.1 Cape schematics, layout, and mechanicals . 85
5.14.2 Usage . 86
5.14.3 Pinout . 86

5.15 Accessing APB and AXI Peripherals Through Linux . 88
5.15.1 AXI . 88
5.15.2 APB . 89
5.15.3 Accessing AXI and APB Peripherals from Linux . 89

5.16 Help! I broke my board. Now what? . 91
5.16.1 The Big Picture . 91
5.16.2 Level 1: Triage . 92
5.16.3 Level 2: U-Boot . 92
5.16.4 Level 3: Linux boot . 93

6 Support 95
6.1 Production board boot media . 95
6.2 Certifications and export control . 95

6.2.1 Export designations . 95
6.2.2 Size and weight . 95

6.3 Additional documentation . 96
6.3.1 Hardware docs . 96
6.3.2 Software docs . 96
6.3.3 Support forum . 96
6.3.4 Pictures . 96

6.4 Change History . 96
6.4.1 Board Changes . 96

iii

iv

BeagleV-Fire

BeagleV®-Fire is a revolutionary SBC powered by the Microchip’s PolarFire® MPFS025T RISC-V System on Chip
(SoC) with FPGA fabric. BeagleV®-Fire opens up new horizons for developers, tinkerers, and the open-source
community to explore the vast potential of RISC-V architecture and FPGA technology. It has the same P8 & P9
cape header pins as BeagleBone Black allowing you to stack your favorite BeagleBone cape on top to expand
it’s capability. Built around the powerful and energy-efficient RISC-V instruction set architecture (ISA) along
with its versatile FPGA fabric, BeagleV®-Fire SBC offers unparalleled opportunities for developers, hobbyists,
and researchers to explore and experiment with RISC-V technology.

Table of contents 1

BeagleV-Fire

2 Table of contents

Chapter 1

Introduction

BeagleV®-Fire is a revolutionary SBC powered by the Microchip’s PolarFire® MPFS025T System on Chip (SoC)
with 4x RV64GC Application cores, 1x RV64IMAC monitor/boot core, and FPGA fabric. BeagleV®-Fire opens up
new horizons for developers, tinkerers, and the open-source community to explore the vast potential of RISC-V
architecture and FPGA technology. It has the same P8 & P9 cape header pins as BeagleBone Black allowing
you to stack your favourite BeagleBone cape on top to expand it’s capability. Built around the powerful and
energy-efficient RISC-V instruction set architecture (ISA) along with its versatile FPGA fabric, BeagleV®-Fire
SBC offers unparalleled opportunities for developers, hobbyists, and researchers to explore and experiment
with RISC-V technology.

1.1 Pinout Diagrams

Choose the cape header to see respective pinout diagram.

P8 cape header

P9 cape header

3

BeagleV-Fire

Fig. 1.1: BeagleV-Fire P8 cape header pinout

4 Chapter 1. Introduction

BeagleV-Fire

Fig. 1.2: BeagleV-Fire P9 cape header pinout

1.1. Pinout Diagrams 5

BeagleV-Fire

1.2 Detailed overview

Table 1.1: BeagleV-Fire features

Feature Description
Processor MPFS025T-FCVG484E
Memory 2GB (1Gb x 16)- 1866MHz 3733Mbps, LPDDR4
Storage Kingston 16GB eMMC
Wireless 1x M.2 Key E, support 2.4GHz/5GHz WiFi module
Ethernet

• PHY: Realtek RTL8211F-VD-CG Gigabit Ethernet phy

• Connector: integrated magnetics RJ-45

USB C
• Connectivity: Flash/programming support

• Power: Input: 5V @ 3A

Other connectors
• 1x SYZYGY High speed connector

• microSD card slot

• CSI connector compatible with BeagleBone AI-64,
BeagleV-Ahead, Raspberry Pi Zero / CM4 (22-pin)

1.3 Board components location

This section describes the key components on the board, their location and function.

1.3.1 Front components location

Fig. 1.3: BeagleV-Fire board front components location

6 Chapter 1. Introduction

BeagleV-Fire

Table 1.2: BeagleV-Fire board front components location

Feature Description
Power LED Power (Board ON) indicator
JTAG (MPFS025T) MPFS025T SoC JTAG debug port
RTL8211F Gigabit IEEE 802.11 Ethernet PHY
P8 & P9 cape header Expansion headers for BeagleBone capes.
2GB RAM 2GB (1Gb x 16)- 1866MHz 3733Mbps, LPDDR4
16GB eMMC Kingston 16GB eMMC Flash storage
CSI 22pin MIPI Camera connectors
M.2 Key E PCIE M.2 Key E connector
UART debug header 6 pin UART debug header
Reset button Press to reset BeagleV-Fire board (MPFS025T SoC)
User button User defined (custom) action button
User LEDs 12x user programmabkle LEDs to show various board status during boot.
GigaBit Ethernet 1Gb/s Wired internet connectivity
Barrel jack Power input
USB C Power, connectivity, and board flashing.

1.3.2 Back components location

Fig. 1.4: BeagleV-Fire board back components location

Table 1.3: BeagleV-Fire board back components location

Feature Description
microSD microSD card slot
SYZYGY SYZYGY High speed connector

1.3. Board components location 7

BeagleV-Fire

8 Chapter 1. Introduction

Chapter 2

Quick Start

2.1 What’s included in the box?

When you purchase a brand new BeagleV-Fire, In the box you’ll get:

1. BeagleV-Fire board

2. Quick-start card

Todo: add image & information about box content.

Tip: For board files, 3D model, and more, you can checkout BeagleV-Fire repository on OpenBeagle.

2.2 Unboxing

2.3 Tethering to PC

To connect BeagleV-Fire board to PC via USB Type C receptacle you need a USB type C cable. Connection guide
for the same is shown below:

Tip: To get a USB type C cable you can checkout links below:

1. USB C cable 0.3m (mouser)

2. USB C cable 1.83m (digikey)

2.4 Flashing eMMC

First we need to go get Beagleboard Imager.

Grab the version suitable for your operating system.

9

https://www.beagleboard.org/boards/beaglev-fire
https://openbeagle.org/beaglev-fire/beaglev-fire
https://www.mouser.com/ProductDetail/Adafruit/4474?qs=CUBnOrq4ZJz9F%2FNF%252BRRALQ%3D%3D
https://www.digikey.com/en/products/detail/coolgear/USB3-AC2MB/16384570
https://github.com/beagleboard/bb-imager-rs/releases

BeagleV-Fire

Fig. 2.1: https://youtu.be/5cylv1R-1mc

Fig. 2.2: BeagleV-Fire tethered connection

10 Chapter 2. Quick Start

https://youtu.be/5cylv1R-1mc

BeagleV-Fire

2.4.1 Device Firmware Update (DFU)

Next we need your Beagle to be ready to receive an updated image:

To enter “DFU” mode, you press and hold the USER button while connecting your Fire to the USB port on your
machine.

You should let the button go once the first LED comes on.

Once you have two solid lit LEDs and an extra USB drive, we’re all set to continue.

2.4.2 BeagleBoard Imager

With BeagleBoard Imager running, work your way from left to right, like so:

1. Select board. This one’s obvious.

2. Select your image variant.

3. Select your drive. This one is critical to get right; see below.

4. Click WRITE and watch it go!

With a little luck, all goes well and BeagleBoard Imager reports no errors.

In that case, you can close out BeagleBoard Imager and disconnect the USB cable.

On the next power-up, your Beagle will boot up the new image and you’re ready to rock!

2.5 Access UART debug console

Note: Some tested devices that are known to be working well include:

2.5. Access UART debug console 11

BeagleV-Fire

1. Adafruit CP2102N Friend - USB to Serial Converter

2. Raspberry Pi Debug Probe Kit for Pico and RP2040

To access a BeagleV-Fire serial debug console you can connect a USB to UART to your board as shown below:

Fig. 2.3: BeagleV-Fire UART debug port connection

To see the board boot log and access your BeagleV-Fire’s console you can use application like tio to access
the console. If you are using Linux your USB to UART converter may appear as /dev/ttyUSB. It will be
different for Mac and Windows operatig systems. To find serial port for your system you can checkout this
guide.

[lorforlinux@fedora ~] $ tio /dev/ttyUSB0
tio v2.5
Press ctrl-t q to quit
Connected

2.6 Demos and Tutorials

• How to retrieve BeagleV-Fire’s gateware version

• Upgrade BeagleV-Fire Gateware

• Flashing gateware and Linux image

• Gateware Design Introduction

• Microchip FPGA Tools Installation Guide

• How to build the BeagleV-Fire Gateware on Windows

12 Chapter 2. Quick Start

https://www.adafruit.com/product/5335
https://www.adafruit.com/product/5699
https://www.mathworks.com/help/supportpkg/arduinoio/ug/find-arduino-port-on-windows-mac-and-linux.html
https://www.mathworks.com/help/supportpkg/arduinoio/ug/find-arduino-port-on-windows-mac-and-linux.html

Chapter 3

Design & specifications

If you want to know how BeagleV-Fire board is designed and what are it’s high-level specifications then this
chapter is for you. We are going to discuss each hardware design element in detail and provide high-level
device specifications in a short and crisp form as well.

Tip: For hardware design files and schematic diagram you can checkout BeagleV-Fire GitLab repository:
https://git.beagleboard.org/beaglev-fire/beaglev-fire

3.1 Block diagram

Fig. 3.1: System block diagram

13

https://git.beagleboard.org/beaglev-fire/beaglev-fire

BeagleV-Fire

Fig. 3.2: Power tree diagram

3.2 System on Chip (SoC)

3.3 Power management

3.4 General Connectivity and Expansion

3.4.1 USB-C port

3.4.2 P8 & P9 cape header pins

3.4.3 ADC

3.5 Buttons and LEDs

3.5.1 User LEDs and Power LED

3.5.2 User and reset button

3.6 Connectivity

3.6.1 Ethernet

14 Chapter 3. Design & specifications

BeagleV-Fire

Fig. 3.3: I2C tree diagram

Fig. 3.4: SoC bank0

3.6. Connectivity 15

BeagleV-Fire

Fig. 3.5: SoC bank1

Fig. 3.6: SoC bank2

16 Chapter 3. Design & specifications

BeagleV-Fire

Fig. 3.7: SoC bank3

Fig. 3.8: SoC bank4

3.7 Memory, Media and Data storage

3.7.1 DDR memory

3.7.2 eMMC

3.7.3 microSD

3.7.4 EEPROM

3.7.5 SPI flash

3.8 Multimedia I/O

3.8.1 CSI

3.9 Debug

3.9.1 UART debug port

3.9.2 JTAG debug port

3.7. Memory, Media and Data storage 17

BeagleV-Fire

Fig. 3.9: SoC power

Fig. 3.10: DC 5V input

18 Chapter 3. Design & specifications

BeagleV-Fire

Fig. 3.11: Ideal diode

Fig. 3.12: VCC 1V0

Fig. 3.13: VCC 1V1

3.9. Debug 19

BeagleV-Fire

Fig. 3.14: VCC 1V8

Fig. 3.15: VCC 2V5

Fig. 3.16: VCC 3V3

20 Chapter 3. Design & specifications

BeagleV-Fire

Fig. 3.17: VCCA 1V0

Fig. 3.18: VIO enable

3.10 Mechanical Specifications

Table 3.1: Dimensions & weight

Parameter Values
Size 86.38 * 54.61 * 18.8 mm
Max heigh 18.8 mm
PCB Size 86.38 * 54.6 mm
PCB Layers 12 Layers
PCB Thickness 1.6 mm
RoHS compliant Yes
Gross Weight 106 g
Net weight 45.8 g

3.10. Mechanical Specifications 21

BeagleV-Fire

Fig. 3.19: USB C

Fig. 3.20: P8 cape header

22 Chapter 3. Design & specifications

BeagleV-Fire

Fig. 3.21: P9 cape header

Fig. 3.22: Cape header voltage level translator

Fig. 3.23: 16bit Delta-Sigma ADC

3.10. Mechanical Specifications 23

BeagleV-Fire

Fig. 3.24: ADC LDO power supply

Fig. 3.25: User LEDs and power LED

Fig. 3.26: User button

24 Chapter 3. Design & specifications

BeagleV-Fire

Fig. 3.27: Reset button

Fig. 3.28: Gigabit ethernet

3.10. Mechanical Specifications 25

BeagleV-Fire

Fig. 3.29: LPDDR memory

Fig. 3.30: EMMC flash storage

26 Chapter 3. Design & specifications

BeagleV-Fire

Fig. 3.31: SD Card socket

Fig. 3.32: EEPROM

Fig. 3.33: SPI Flash

3.10. Mechanical Specifications 27

BeagleV-Fire

Fig. 3.34: CSI

Fig. 3.35: UART debug header

Fig. 3.36: JTAG debug header

28 Chapter 3. Design & specifications

Chapter 4

Expansion

4.1 Cape Headers

Todo: Add information for custom hardware building and debugging.

The expansion interface on the board is comprised of two headers P8 (46 pin) & P9 (46 pin). All signals on the
expansion headers are 3.3V unless otherwise indicated.

Note: Do not connect 5V logic level signals to these pins or the board will be damaged.

Note: DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL
DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

4.1.1 Connector P8

The following tables show the pinout of the P8 expansion header. The gateware image is responsible for setting
the function of each pin. Refer to the processor documentation for more information on these pins and detailed
descriptions of all of the pins listed. In some cases there may not be enough signals to complete a group of
signals that may be required to implement a total interface.

The column heading is the pin number on the expansion header.

The Name row is the pin name on the processor.

The BALL row is the pin number on the processor.

The rows below BALL are the gateware setting for each pin.

NOTES:

DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL
DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

29

BeagleV-Fire

P8.01-P8.02

P8.01 P8.02
GND GND

P8.03-P8.05

Pin P8.03 P8.04 P8.05
Name HSIO6NB0 HSIO6PB0/CCC_NE_CLKIN_N_11 HSIO12NB0
BALL V22 W22 V19
DEFAULT MSS GPIO_2[0] MSS GPIO_2[1] MSS GPIO_2[2]

User LED 0 User LED 1 User LED 2
GPIOS MSS GPIO_2[0] MSS GPIO_2[1] MSS GPIO_2[2]

User LED 0 User LED 1 User LED 2
ROBOTICS MSS GPIO_2[0] MSS GPIO_2[1] MSS GPIO_2[2]

User LED 0 User LED 1 User LED 2

P8.06-P8.09

Pin P8.06 P8.07 P8.08 P8.09
Name HSIO12PB0/CLKIN_N_9/CCC_NE_CLKIN_N_9 HSIO30NB0 HSIO30PB0/CLKIN_N_3/CCC_NW_CLKIN_N_3 HSIO8NB0
BALL V20 V15 V14 V21
DEFAULT MSS GPIO_2[3] MSS

GPIO_2[4]
MSS GPIO_2[5] MSS

GPIO_2[6]
User LED 3 User LED 4 User LED 5 User LED 6

GPIOS MSS GPIO_2[3] MSS
GPIO_2[4]

MSS GPIO_2[5] MSS
GPIO_2[6]

User LED 3 User LED 4 User LED 5 User LED 6
ROBOTICS MSS GPIO_2[3] MSS

GPIO_2[4]
MSS GPIO_2[5] MSS

GPIO_2[6]
User LED 3 User LED 4 User LED 5 User LED 6

P8.10-P8.13

Pin P8.10 P8.11 P8.12 P8.13
Name HSIO8PB0/CCC_NE_CLKIN_N_10/CCC_NE_PLL0_OUT0HSIO7NB0 HSIO7PB0/CCC_NE_PLL0_OUT1GPIO47PB1
BALL W21 Y21 Y20 B10
DEFAULT MSS GPIO_2[7] MSS

GPIO_2[8]
MSS GPIO_2[9] core_pwm[1] @

0x41500000
User LED 7 User LED 8 User LED 9 PWM_2:1

GPIOS MSS GPIO_2[7] MSS
GPIO_2[8]

MSS GPIO_2[9] MSS GPIO_2[10]

User LED 7 User LED 8 User LED 9 User LED 10
ROBOTICS MSS GPIO_2[7] MSS

GPIO_2[8]
MSS GPIO_2[9] core_pwm[1] @

0x41500000
User LED 7 User LED 8 User LED 9 PWM_2:1

30 Chapter 4. Expansion

BeagleV-Fire

P8.14-P8.16

Pin P8.14 P8.15 P8.16
Name GPIO47NB1 HSIO34NB0 HSIO34PB0/CCC_NW_CLKIN_N_1
BALL B9 T12 U12
DEFAULT MSS GPIO_2[11] MSS GPIO_2[12] MSS GPIO_2[13]

User LED 11 GPIO GPIO
GPIOS MSS GPIO_2[11] MSS GPIO_2[12] MSS GPIO_2[13]

User LED 11 GPIO GPIO
ROBOTICS MSS GPIO_2[11] MSS GPIO_2[12] MSS GPIO_2[13]

User LED 11 GPIO GPIO

P8.17-P8.19

Pin P8.17 P8.18 P8.19
Name HSIO29PB0 HSIO15PB0/DQS/CCC_NE_PLL1_OUT0 HSIO19NB0
BALL W13 T16 W18
DEFAULT MSS GPIO_2[14] MSS GPIO_2[15] core_pwm[0] @ 0x41500000

GPIO GPIO PWM_2:0
GPIOS MSS GPIO_2[14] MSS GPIO_2[15] MSS GPIO_2[16]

GPIO GPIO GPIO
ROBOTICS MSS GPIO_2[14] MSS GPIO_2[15] core_pwm[0] @ 0x41500000

GPIO GPIO PWM_2:0

P8.20-P8.22

Pin P8.20 P8.21 P8.22
Name HSIO15NB0/DQS HSIO9PB0/DQS/CCC_NE_PLL0_OUT0 HSIO9NB0/DQS
BALL R16 AA21 AA22
DEFAULT MSS GPIO_2[17] MSS GPIO_2[18] MSS GPIO_2[19]

GPIO GPIO GPIO
GPIOS MSS GPIO_2[17] MSS GPIO_2[18] MSS GPIO_2[19]

GPIO GPIO GPIO
ROBOTICS MSS GPIO_2[17] MSS GPIO_2[18] MSS GPIO_2[19]

GPIO GPIO GPIO

P8.23-P8.26

Pin P8.23 P8.24 P8.25 P8.26
Name HSIO18PB0/CLKIN_N_7 HSIO18NB0 HSIO16PB0 GPIO49NB1
BALL AB18 AA18 V17 A12
DEFAULT MSS GPIO_2[20] MSS GPIO_2[21] MSS GPIO_2[22] MSS GPIO_2[23]

GPIO GPIO GPIO GPIO
GOIOS MSS GPIO_2[20] MSS GPIO_2[21] MSS GPIO_2[22] MSS GPIO_2[23]

GPIO GPIO GPIO GPIO
ROBOTICS MSS GPIO_2[20] MSS GPIO_2[21] MSS GPIO_2[22] MSS GPIO_2[23]

GPIO GPIO GPIO GPIO

4.1. Cape Headers 31

BeagleV-Fire

P8.27-P8.29

Pin P8.27 P8.28 P8.29
Name GPIO49PB1/CLKIN_S_5 GPIO51NB1 GPIO51PB1/CLKIN_S_6
BALL A13 B14 B13
DEFAULT MSS GPIO_2[24] MSS GPIO_2[25] MSS GPIO_2[26]

GPIO GPIO GPIO
GPIOS MSS GPIO_2[24] MSS GPIO_2[25] MSS GPIO_2[26]

GPIO GPIO GPIO
ROBOTICS MSS GPIO_2[24] MSS GPIO_2[25] MSS GPIO_2[26]

GPIO GPIO GPIO

P8.30-P8.32

Pin P8.30 P8.31 P8.32
Name GPIO50NB1/DQS GPIO50PB1/DQS GPIO53NB1
BALL D14 D13 B15
DEFAULT MSS GPIO_2[27] core_gpio[0] @ 0x41100000 core_gpio[1] @ 0x41100000

GPIO GPIO GPIO
GPIOS MSS GPIO_2[27] core_gpio[0] @ 0x41100000 core_gpio[1] @ 0x41100000

GPIO GPIO GPIO
ROBOTICS MSS GPIO_2[27] core_gpio[0] @ 0x41100000 core_gpio[1] @ 0x41100000

GPIO GPIO GPIO

P8.33-P8.35

Pin P8.33 P8.34 P8.35
Name GPIO53PB1/CLKIN_S_7 GPIO52NB1/LPRB_B GPIO52PB1/LPRB_A
BALL A15 C15 C14
DEFAULT core_gpio[2] @ 0x41100000 core_gpio[3] @ 0x41100000 core_gpio[4] @ 0x41100000

GPIO GPIO GPIO
GPIOS core_gpio[2] @ 0x41100000 core_gpio[3] @ 0x41100000 core_gpio[4] @ 0x41100000

GPIO GPIO GPIO
ROBOTICS core_gpio[2] @ 0x41100000 core_gpio[3] @ 0x41100000 core_gpio[4] @ 0x41100000

GPIO GPIO GPIO

P8.36-P8.38

Pin P8.36 P8.37 P8.38
Name GPIO37NB1 GPIO37PB1/CCC_SW_CLKIN_S_1 GPIO3NB1
BALL B4 C4 C17
DEFAULT core_gpio[5] @ 0x41100000 core_gpio[6] @ 0x41100000 core_gpio[7] @ 0x41100000

GPIO GPIO GPIO
GPIOS core_gpio[5] @ 0x41100000 core_gpio[6] @ 0x41100000 core_gpio[7] @ 0x41100000

GPIO GPIO GPIO
ROBOTICS core_gpio[5] @ 0x41100000 core_gpio[6] @ 0x41100000 core_gpio[7] @ 0x41100000

GPIO GPIO GPIO

32 Chapter 4. Expansion

BeagleV-Fire

P8.39-P8.41

Pin P8.39 P8.40 P8.41
Name GPIO3PB1/CCC_SE_CLKIN_S_10/CCC_SE_PLL1_OUT0 GPIO5NB1 GPIO5PB1/CCC_SE_CLKIN_S_11
BALL B17 B18 A18
DEFAULT core_gpio[8] @ 0x41100000 core_gpio[9] @ 0x41100000 core_gpio[10] @ 0x41100000

GPIO GPIO GPIO
GPIOS core_gpio[8] @ 0x41100000 core_gpio[9] @ 0x41100000 core_gpio[10] @ 0x41100000

GPIO GPIO GPIO
ROBOTICS core_gpio[8] @ 0x41100000 core_gpio[9] @ 0x41100000 core_gpio[10] @ 0x41100000

GPIO GPIO GPIO

P8.42-P8.44

Pin P8.42 P8.43 P8.44
Name GPIO36NB1 GPIO36PB1/CCC_SW_CLKIN_S_0 GPIO42NB1
BALL D6 D7 D8
DEFAULT core_gpio[11] @ 0x41100000 core_gpio[12] @ 0x41100000 core_gpio[13] @ 0x41100000

GPIO GPIO GPIO
GPIOS core_gpio[11] @ 0x41100000 core_gpio[12] @ 0x41100000 core_gpio[13] @ 0x41100000

GPIO GPIO GPIO
ROBOTICS core_gpio[11] @ 0x41100000 core_gpio[12] @ 0x41100000 core_gpio[13] @ 0x41100000

GPIO GPIO GPIO

P8.45-P8.46

Pin P8.45 P8.46
Name GPIO42PB1 GPIO4PB1/CCC_SE_PLL1_OUT1
BALL D9 D18
DEFAULT core_gpio[14] @ 0x41100000 core_gpio[15] @ 0x41100000

GPIO GPIO
GPIOS core_gpio[14] @ 0x41100000 core_gpio[15] @ 0x41100000

GPIO GPIO
ROBOTICS core_gpio[14] @ 0x41100000 core_gpio[15] @ 0x41100000

GPIO GPIO

4.1.2 Connector P9

The following tables show the pinout of the P9 expansion header. The gateware image is responsible for setting
the function of each pin. Refer to the processor documentation for more information on these pins and detailed
descriptions of all of the pins listed. In some cases there may not be enough signals to complete a group of
signals that may be required to implement a total interface.

The column heading is the pin number on the expansion header.

The Name row is the pin name on the processor.

The BALL row is the pin number on the processor.

The rows below BALL are the gateware setting for each pin.

NOTES:

DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL
DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

4.1. Cape Headers 33

BeagleV-Fire

P9.01-P9.05

P9.01 P9.02 P9.03 P9.04 P9.05
GND GND VCC_3V3 VCC_3V3 VDD_5V

P9.06-P9.10

P9.06 P9.07 P9.08 P9.10
VDD_5V SYS_5V SYS_5V SYS_RSTN

Pin P9.09
Name HSIO19PB0
BALL W19

P9.11-P9.13

Pin P9.11 P9.12 P9.13
Name GPIO38NB1/DQS GPIO38PB1/DQS/CCC_SW_PLL1_OUT0 GPIO2NB1/DQS
BALL B5 C5 D19
DEFAULT MMUART4 core_gpio[1] @ 0x41200000 MMUART4

UART4 RX GPIO UART4 TX
GPIOS core_gpio[0] @ 0x41200000 core_gpio[1] @ 0x41200000 core_gpio[2] @ 0x41200000

GPIO GPIO GPIO
ROBOTICS ~ core_gpio[0] @ 0x41200000 core_gpio[7] @ 0x41200000

~ GPIO GPIO

P9.14-P9.16

Pin P9.14 P9.15 P9.16
Name GPIO39PB1/CLKIN_S_2/CCC_SW_CLKIN_S_2/CCC_SW_PLL1_OUT0GPIO40NB1 GPIO40PB1/CCC_SW_PLL1_OUT1
BALL C6 A5 A6
DEFAULT core_pwm[0] @ 0x41400000 core_gpio[4] @

0x41200000
core_pwm[1] @ 0x41400000

PWM_1:0 GPIO PWM_1:1
GOIOS core_gpio[3] @ 0x41200000 core_gpio[4] @

0x41200000
core_gpio[5] @ 0x41200000

GPIO GPIO GPIO
ROBOTICS core_pwm[0] @ 0x41400000 core_gpio[1] @

0x41200000
core_pwm[1] @ 0x41400000

PWM_1:0 GPIO PWM_1:1

P9.17-P9.19

Pin P9.17 P9.18 P9.19
Name GPIO44NB1/DQS GPIO44PB1/DQS/CCC_SW_PLL0_OUT0 GPIO45PB1/CCC_SW_PLL0_OUT0
BALL C9 C10 A10
DEFAULT ~ ~ MSS I2C0

~ ~ I2C0 SCL
GPIOS core_gpio[6] @ 0x41200000 core_gpio[7] @ 0x41200000 MSS I2C0

GPIO GPIO I2C0 SCL
ROBOTICS ~ ~ MSS I2C0

~ ~ I2C0 SCL

34 Chapter 4. Expansion

BeagleV-Fire

P9.20-P9.22

Pin P9.20 P9.21 P9.22
Name GPIO45NB1 GPIO43NB1 GPIO43PB1
BALL A11 B8 A8
DEFAULT MSS I2C0 ~ ~

I2C0 SDA ~ ~
GPIOS MSS I2C0 core_gpio[8] @ 0x41200000 core_gpio[8] @ 0x41200000

I2C0 SDA GPIO GPIO
ROBOTICS MSS I2C0 ~ ~

I2C0 SDA ~ ~

P9.23-P9.25

Pin P9.23 P9.24 P9.25
Name GPIO48NB1 GPIO48PB1/CLKIN_S_4 GPIO41NB1
BALL C12 B12 B7
DEFAULT core_gpio[10] @ 0x41200000 ~ core_gpio[12] @ 0x41200000

GPIO ~ GPIO
GPIOS core_gpio[10] @ 0x41200000 core_gpio[11] @ 0x41200000 core_gpio[12] @ 0x41200000

GPIO GPIO GPIO
ROBOTICS core_gpio[2] @ 0x41200000 ~ core_gpio[3] @ 0x41200000

GPIO ~ GPIO

P9.26-P9.28

Pin P9.26 P9.27 P9.28
Name GPIO41PB1/CLKIN_S_3/CCC_SW_CLKIN_S_3 GPIO46NB1 GPIO46PB1/CCC_SW_PLL0_OUT1
BALL A7 D11 C11
DEFAULT ~ core_gpio[14] @ 0x41200000 ~

~ GPIO ~
GPIOS core_gpio[13] @ 0x41200000 core_gpio[14] @ 0x41200000 core_gpio[15] @ 0x41200000

GPIO GPIO GPIO
ROBOTICS ~ ~ ~

~ ~ ~

P9.29-P9.31

Pin P9.29 P9.30 P9.31
Name GPIO1PB1/CLKIN_S_9/CCC_SE_CLKIN_S_9 GPIO1NB1 GPIO4NB1
BALL F17 F16 E18
DEFAULT ~ core_gpio[17] @ 0x41200000 ~

~ GPIO ~
GPIOS core_gpio[16] @ 0x41200000 core_gpio[17] @ 0x41200000 core_gpio[18] @ 0x41200000

GPIO GPIO GPIO
ROBOTICS ~ core_gpio[5] @ 0x41200000 ~

~ GPIO ~

P9.32-P9.40

P9.32 P9.34
VDD_ADC GND

4.1. Cape Headers 35

BeagleV-Fire

P9.33 P9.35 P9.36 P9.37 P9.38 P9.39 P9.40
AIN4 AIN6 AIN5 AIN2 AIN3 AIN0 AIN1

P9.41-P9.42

Pin P9.41 P9.42
Name GPIO0PB1/CLKIN_S_8/CCC_SE_CLKIN_S_8/CCC_SE_PLL0_OUT0 GPIO0NB1
BALL E15 E14
DEFAULT core_gpio[19] @ 0x41200000 core_pwm[0] @ 0x41000000

GPIO PWM_0:0
GPIOS core_gpio[19] @ 0x41200000 core_gpio[20] @ 0x41200000

GPIO GPIO
ROBOTICS core_gpio[19] @ 0x41200000 ~

GPIO ~

P9.43-P9.46

P9.43 P9.44 P9.45 P9.46
GND GND GND GND

36 Chapter 4. Expansion

Chapter 5

Demos

5.1 Upgrade BeagleV-Fire Gateware

This document describes how to upgrade your BeagleV-Fire’s gateware. This approach can be used out of the
box using Linux commands executed on BeagleV-Fire

5.1.1 Required Equipment

• BeagleV-Fire board

• USB-C cable

• Ethernet cable

The USB-C cable provides power, a serial interface to BeagleV-Fire and allows connecting to BeagleV-Fire
through a browser using IP address 192.168.7.2.

The Ethernet cable connected to your local network (LAN) allows connecting to BeagleV-Fire using the SSH
protocol. It also allows BeagleV-Fire to retrieve updated packages through your local network’s Internet con-
nection.

5.1.2 Connect to BeagleV-Fire Linux Command Line Interface

BeagleV-Fire boots Linux out of the box. Like all Beagleboard boards there are several methods to get BeagleV-
Fire’s Linux command prompt.

• Cockpit

• SSH

• Serial port

Cockpit

Enter the following URL in your web browser: https://beaglev.localdomain:9090/

On first use, click through the security warning. Login using beagle/temppwd as user/password. Click on
Terminal in the left pane. You now have a Linux command prompt running on your BeagleV-Fire. Next step:
enter the commands described in the Gateware Upgrade Linux Commands section of this document.

Note: You can connect to the Cockpit using the IP address dynamically assigned to your BeagleV-Fire in your
local Ethernet network. One method of finding the value of that dynamically assigned IP address is to open

37

BeagleV-Fire

a serial terminal though the USB port and use the ip address Linux command. Please refer to the USB
Serial Port section.

SSH

Like all Beagleboard boards, you can SSH to the board through the USB interface by using IP address
192.168.7.2.

Note: On Windows, this approach may require some drivers to be updated or installed. Use one of the other
approaches if you are not immediately successful with this one. You can circle back later to adjust your Windows
installation if required.

Serial Port

A serial port is available through the USB-C port. This serial port becomes available once Linux has booted on
BeagleV-Fire. Please wait a couple of minutes after powering up the board before looking for additional serial
ports reported by your host computer’s operating system. You can then use your favorite serial port terminal
tool such as Putty or Screen to access the BeagleV-Fire Linux command prompt.

For example on your Linux host computer:

screen /dev/ttyACM0 115200

Where ttyACM0 is an additional serial port that appeared after BeagleV-Fire was connected to your Linux
host computer. This serial port can be identified using the dmesg | grep tty Linux command which will
show the most recent serial port added to the host computer.

On Windows, BeagleV-Fire’s serial port number will show in the Windows Device Manager. Use that serial port
number in Putty with a speed 115200 baud, no flow-control.

5.1.3 Gateware Upgrade Linux Commands

Note: BeagleV-Fire needs to be connected to the internet through your local network for the commands in
this section to work. The connection can be through the Ethernet port or the Wi-Fi module.

Install bbb.io-gateware

You need to install the bbb.io-gateware package. This will allow retrieving the most up-to-date gateware.

sudo apt install bbb.io-gateware

Retrieve Available Updated Linux packages List

The list will include the latest BeagleV-Fire gateware packages.

sudo apt update

38 Chapter 5. Demos

BeagleV-Fire

Upgrade Linux Packages

This will upgrade the BeagleV-Fire gateware Linux programming files located under /usr/share/
beagleboard/gateware. Several directories are found in that location, each containing programming
files for one individual gateware configuration.

sudo apt upgrade

Launch Reprogramming of BeagleV-Fire’s FPGA

Change directory to /usr/share/beagleboard/gateware. This directory contains a script perform-
ing the gateware’s reprogramming. It also contains one directory for each of the possible gateware config-
uration that can be programmed into your BeagleV-Fire. The name of one of these directories is passed as
argument to the script to specify which gateware configuration you wish to program your BeagleV-Fire with.

cd /usr/share/beagleboard/gateware
. ./change-gateware.sh default

Important: Do not power-off BeagleV-Fire until it has rebooted by itself. The gateware reprogramming may
take a couple of minutes.

The change-gateware script programs the selected gateware and its associated device tree overlays into the
PolarFire SoC System Controllers SPI flash and triggers a software reboot. During the reboot, the Hart Software
Services (HSS) will request the PolarFire SoC System Controller to reprogram the FPGA and eNVM. The PolarFire
SoC System Controller will reprogram the FPGA if it finds it contains a different design version than the one in
the SPI Flash. The board reboots on completion of the FPGA reprogramming.

5.2 Flashing gateware and Linux image

Todo: This is the hard way! Special cables and FlashPros are not required when using the firmware we initially
ship on the board. This tutorial should be rescripted as how to _unbrick_ your board. Also, we have other work-
arounds using software and GPIOs rather than FlashPros. Let’s not put this in user’s face as the experience
when it is far more painful than using the change-gateware.sh script and “hold BOOT button when applying
power” solutions we’ve created!

In this tutorial we are going to learn to flash the gateware image to FPGA and sdcard.image to eMMC
storage.

Important: Additional hardware required:

1. FlashPro5/6 programmer

2. Tag connect TC2050-IDC-NL 10-Pin No-Legs Cable with Ribbon connector

3. TC2050-CLIP-3PACK Retaining CLIP board for TC2050-NL cables

5.2.1 Programming & Debug tools installation

To flash a gateware image to your BeagleV-Fire board you will require a FlashPro5/6 and FlashPro Express
(FPExpress) tool which comes pre-installed as part of Libero SoC Design Suite. A standalone FlashPro Express
tool is also available with MicroChip’s Programming and Debug Tools package, which we are going to use for
this tutorial. Below are the steps to install the software:

5.2. Flashing gateware and Linux image 39

https://www.tag-connect.com/product/tc2050-idc-nl-10-pin-no-legs-cable-with-ribbon-connector
https://www.tag-connect.com/product/tc2050-clip-3pack-retaining-clip
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/fpga/libero-software-later-versions
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/programming-and-debug

BeagleV-Fire

1. Download the zip for your operating system from Programming and Debug Tools page.

2. Unzip the file and in the unzipped folder you will find launch_installer.sh and
Program_Debug_v2023.1.bin.

3. Execute the launch_installer.sh script to start the installation procedure.

[lorforlinux@fedora Program_Debug_v2023.1_lin] $./launch_installer.sh

No additional packages to install for installer usage

Requirement search complete.

See /tmp/check_req_installer608695.log for information.

Launch of installer
Preparing to install
Extracting the JRE from the installer archive...
Unpacking the JRE...

Note: It’s recommended to install under home/user/microchip for linux users.

Enabling non-root user to access FlashPro

1. Download 60-openocd.rules

2. Copy udev rule sudo cp 60-openocd.rules /etc/udev/rules.d

3. Trigger udevadm using sudo udevadm trigger or reboot the PC for the changes to take effect

5.2.2 Flashing gateware image

Note: content below is valid for beta testers only.

Launch FPExpress

1. Download FlashProExpress.zip file and unzip, it contains the *.job file which we need to
create a new project in FPExpress.

2. Open up a terminal and go to /home/user/microchip/Program_Debug_v202X.Y/
Program_Debug_Tool/bin which includes FPExpress tool.

3. Execute ./FPExpress in terminal to start FlashPro Express software.

Create new project

Important: Make sure you have your FlashPro5/6 connected before you create a new project.

Press CTRL+N to create a file and you will see a pop-up window like shown below,

Follow the steps below as annotated in the image above:

1. Click on browse (1) button to select the job file.

2. Click on browse (2) button to select the project location.

40 Chapter 5. Demos

https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/programming-and-debug

BeagleV-Fire

Fig. 5.1: FPExpress new project creation window

3. Click ok button to finish.

If your FlashPro5/6 is connected properly you’ll see the window shown below:

Following the annotation in the image above:

1. From drop-down select Program action

2. Click on RUN button

3. Shows the progress

If you see a lot of green color and the progress bar says PASSED then well done you have successfully flashed
the gateware image on your BeagleV-Fire board.

5.2.3 Flashing eMMC

Connect to BeagleV-Fire UART debug port using a 3.3v USB to UART bridge.

Now you can runtio <port> -b 115200 in a terminal window to access the UART debug port connection.
Once you are connected properly you can press the Reset button which will show you a progress bar like in the

Once you see that progress bar on your screen you can start pressing any button (0-9/a-z) which will stop the
board from fully booting and you’ll be able to access Hart Software Services (HSS) prompt. BeagleV-Fire’s eMMC
content is written by the Hart Software Services (HSS) using the usbdmsc command. The HSS usbdmsc
command exposes the eMMC as a USB mass storage device USB type C connector.

Once you see >> you can execute the commands below:

1. >> mmc

2. >> usbdmsc

After executing the commands above your BeagleV-Fire’s eMMC will be exposed as a mass storage device like
shown in the image below:

5.2. Flashing gateware and Linux image 41

BeagleV-Fire

Fig. 5.2: FPExpress new project flash window

Fig. 5.3: UART debug connection

Fig. 5.4: BeagleV-Fire booting HSS with progress bar

42 Chapter 5. Demos

BeagleV-Fire

Fig. 5.5: BeagleV-Fire boot messages with HSS prompt access

Fig. 5.6: HSS commands to show eMMC as mass storage

5.2. Flashing gateware and Linux image 43

BeagleV-Fire

Fig. 5.7: BeagleV-Fire eMMC as mass storage

Once your board is exposed as a mass storage device, you can proceed to flash the sdcard.img on your
BeagleV-Fire’s eMMC.

This document outlines two methods to flash from your local machine to BeagleV-Fire’s eMMC.

1. First method is to use Balena Etcher software. This software can be used to flash image in either Windows
or Linux operating system.

Select image

1. Select the sdcard.img file from your local drive storage.

2. Click on select target.

Select Target

1. Select MCC PolarFireSoC_msd as target.

2. Click Select(1) to proceed.

Flash image

1. Click on Flash! to flash the sdcard.img on BeagleV-Fire eMMC storage.

2. Second method is suitable for flashing the image using Linux machine via the command line.

sudo dd if=output/images/sdcard.img of=/dev/sdX bs=1M status=progress

44 Chapter 5. Demos

https://etcher.balena.io/#download-etcher

BeagleV-Fire

Fig. 5.8: Balena Etcher selecting image

Fig. 5.9: Balena Etcher selecting target

5.2. Flashing gateware and Linux image 45

BeagleV-Fire

Fig. 5.10: Balena Etcher flashing image

Note: You need to replace /dev/sdX with the actual device name of your eMMC. Use tools like dmesg, lsblk,
or GNOME Disks before and after exposing your device as a USB to identify the correct device name. Be very
careful not to overwrite the wrong drive, as this action is irreversible.

• Once the transfer is complete, type CTRL+C to disconnect your device

• Finally boot the new Linux image by typing boot or reset your board

Congratulations! with that done you have fully updated BeagleV-Fire board with up to date gateware image on
it’s PolarFire SoC’s FPGA Fabric and linux image on it’s eMMC storage.

5.3 Microchip FPGA Tools Installation Guide

Instructions for installing the Microchip FPGA tools on a Ubuntu 20.04 or Ubuntu 22.04 desktop.

Important: Wewill be providing instances of Libero that you can run from git.beagleboard.org’s gitlab-runners
such that you do not need to install the tools on your local machine.

Todo: Make sure people know about the alternative and we provide links to details on that before we send
them down this process.

46 Chapter 5. Demos

BeagleV-Fire

5.3.1 Install Libero

Note: Libero 2023.2, 2024.1 or 2024.2 should work. 2024.2 is used as an example.

Create a folder named Microchip in your /home folder

• Download installer from the Microchip’s fpga and soc design tools section.

• Install Libero

unzip Libero_SoC_v2024.2_lin.zip

./launch_installer.sh

Important: Do not use the default location suggested by the Libero installer. Instead of
/usr/local/Microchip/Libero_SoC_v2024.2 install into ~/Microchip/Libero_SoC_v2024.2

Run the post installation script which will install missing packages:

sudo /home/$USER/Microchip/Libero_SoC_v2024.2/Logs/req_to_install.sh

No need to run the FlashPro hardware installation scripts. This will be taken care of as part of the SoftConsole
installation.

5.3.2 Install SoftConsole 2022.2

• Download installer from Microchip website.

sudo chmod +x Microchip-SoftConsole-v2022.2-RISC-V-747-linux-x64-installer.
↪→run

./Microchip-SoftConsole-v2022.2-RISC-V-747-linux-x64-installer.run

Accept the license, Click Forward, Finish.

Perform the post installation steps as described in the html file opened when you click Finish.

Important: Please pay special attention to the “Enabling non-root user to access FlashPro” section of the
post-installation instructions. This will actually allow you to program the board using Libero.

5.3.3 Install the Libero licensing daemon

Download the latest 64 bit Licensing Daemons from the Microchip’s fpga and soc design tools section

• Linux_Licensing_Daemon_11.19.6.0_64-bit.tar.gz

• Windows_Licensing_Daemon_11.19.6.0_64-bit.zip

Older Daemon downloads can be found at Microchip’s daemons section

• Linux_Licensing_Daemon_11.16.1_64-bit.tar.gz

• Windows_Licensing_Daemon_11.16.1_64-bit.zip

Copy the downloaded file to the Microchip directory within your home directory and untar it.

5.3. Microchip FPGA Tools Installation Guide 47

https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/fpga/libero-software-later-versions
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/soc-fpga/softconsole
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/fpga/libero-software-later-versions
https://ww1.microchip.com/downloads/secure/aemdocuments/documents/fpga/media-content/FPGA/daemons/Linux_Licensing_Daemon_11.19.6.0_64-bit.tar.gz
https://ww1.microchip.com/downloads/secure/aemdocuments/documents/fpga/media-content/FPGA/daemons/Windows_Licensing_Daemon_11.19.6.0_64-bit.zip
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/fpga/licensing
https://ww1.microchip.com/downloads/aemdocuments/documents/fpga/media-content/FPGA/daemons/Linux_Licensing_Daemon_11.16.1_64-bit.tar.gz
https://ww1.microchip.com/downloads/aemdocuments/documents/fpga/media-content/FPGA/daemons/Windows_Licensing_Daemon_11.16.1_64-bit.zip

BeagleV-Fire

cd ~/Microchip

tar -xvf Linux_Licensing_Daemon_11.19.6.0_64-bit.tar.gz

Install the Linux Standard Base:

sudo apt-get update

sudo apt-get -y install lsb

5.3.4 Request a Libero Silver license

• Visit microchip’s fpga software products page

• Choose “Libero Silver 1Yr Floating License for Windows/Linux Server” from the list.

• Enter your MAC address and click register.

Note: A MAC address looks something like 12:34:56::78:ab:cd when you use the “ip address” command to
find out its value on your Linux machine. However, you need to enter it as 123456abcd in this dialog box.

You will get an email with a License.dat file. Copy it into the ~/Microchip/license directory. Replace
<put.hostname.here> in License.dat with localhost and add Linux_Licensing_Daemon as the path to the dae-
mons.

The top of your license file should look something like this after editing. Your daemon files should be located
in the Linux_Licensing_Daemon folder inside the Microchip folder.

SERVER localhost 001584731680 1702
DAEMON actlmgrd Linux_Licensing_Daemon/actlmgrd
Starting Libero SOC v2024.2, customers are recommended ...
DAEMON mgcld Linux_Licensing_Daemon/mgcld
DAEMON saltd Linux_Licensing_Daemon/saltd
VENDOR snpslmd Linux_Licensing_Daemon/snpslmd

5.3.5 Execute tool setup script

Download the script:

Listing 5.1: Libero environment and license setup script

#!/bin/bash

Gets Libero version

dir=$(pwd)
while [[”$dir” != ”/”]]; do

for subdir in ”$dir”/*/; do
if [[$subdir =~ Libero_SoC_v([0-9]+\.[0-9]+)/]]; then
Libero_ver=”${BASH_REMATCH[1]}”
break 2

fi
done
dir=$(dirname ”$dir”)

done

#Set preferred Libero version here if needed
(continues on next page)

48 Chapter 5. Demos

https://www.microchipdirect.com/fpga-software-products

BeagleV-Fire

(continued from previous page)

#Libero_ver=2023.2

echo ”Using Libero version:” $Libero_ver

Check if Libero_ver was set; if not, print an error and exit
if [[-z ”$Libero_ver”]]; then
echo ”Error: No directory found matching the pattern 'Libero_SoC_vXXXX.Y/'”
return 1

fi

↪→#===
Edit the following section with the location where the following tools are
installed if they aren't in the default location:
- SoftConsole (SC_INSTALL_DIR)
- Libero (LIBERO_INSTALL_DIR)
- Licensing daemon for Libero (LICENSE_DAEMON_DIR)

↪→#===

export SC_INSTALL_DIR=/home/$USER/Microchip/SoftConsole-v2022.2-RISC-V-747
export LIBERO_INSTALL_DIR=/home/$USER/Microchip/Libero_SoC_v$Libero_ver
export LICENSE_DAEMON_DIR=/home/$USER/Microchip/Linux_Licensing_Daemon
export LICENSE_FILE_DIR=/home/$USER/Microchip/license
export SMARTHLS_INSTALL_DIR=$LIBERO_INSTALL_DIR/SmartHLS-$Libero_ver/SmartHLS

↪→#===
The following was tested on Ubuntu 20.04 with:
- Libero 2023.2 and 2024.1
- SoftConsole 2022.2
It was also tested on Ubuntu 22.04 with:
- Libero 2024.2
- SoftConsole 2022.2

↪→#===

#
SoftConsole
#
export PATH=$PATH:$SC_INSTALL_DIR/riscv-unknown-elf-gcc/bin
export FPGENPROG=$LIBERO_INSTALL_DIR/Libero/bin64/fpgenprog

#
Libero
#
export PATH=$PATH:$LIBERO_INSTALL_DIR/Libero/bin:$LIBERO_INSTALL_DIR/Libero/
↪→bin64
export PATH=$PATH:$LIBERO_INSTALL_DIR/SynplifyPro/bin
export PATH=$PATH:$LIBERO_INSTALL_DIR/ModelSimPro/modeltech/linuxacoem
export PATH=$PATH:$SMARTHLS_INSTALL_DIR/bin
export PATH=$PATH:$SMARTHLS_INSTALL_DIR/swtools/binutils/riscv-gnu-toolchain/
↪→bin

export LOCALE=C
export LD_LIBRARY_PATH=/usr/lib/i386-linux-gnu:$LD_LIBRARY_PATH

#
Libero License daemon
#
export LM_LICENSE_FILE=1702@localhost

(continues on next page)

5.3. Microchip FPGA Tools Installation Guide 49

BeagleV-Fire

(continued from previous page)

export SNPSLMD_LICENSE_FILE=1702@localhost

$LICENSE_DAEMON_DIR/lmgrd -c $LICENSE_FILE_DIR/License.dat -l $LICENSE_FILE_
↪→DIR/license.log

setup-microchip-tools.sh

Details:

You can create a folder named FPGA-Tools-Setup and store the file there, although this is not required, as long
as it is inside the Microchip folder.

You shouldn’t need to edit the script, as long as you have installed Libero inside a folder that follows the
Libero_SoC_vXXXX.X format, or if you have multiple Libero versions installed and want to select a preferred
one to use.

Source the script:

sudo chmod +x setup-microchip-tools.sh

. ./setup-microchip-tools.sh

Important: Do not forget the leading dot. It matters. You will need to run this every time you restart your
machine.

Optionally, add this to the end of your ~/.bashrc file to avoid running it each time on startup.

First, open ~/.bashrc:

nano ~/.bashrc

Then, add the following lines at the end:

cd /home/$USER/Microchip/
. ./setup-microchip-tools.sh

You can then start Libero to open an existing Libero project.

libero

However you will more than likely want to use Libero to run a TCL script that will build a design for you.

libero SCRIPT:BUILD_A_DESIGN.tcl

5.4 Gateware Design Introduction

The PolarFire SoC device used on BeagleV-Fire is an SoC FPGA which includes a RISC-V processors subsystem
and a PolarFire FPGA on the same die. The gateware configures the Microcprosessor subsystem’s hardware
and programs the FPGA with digital logic allowing customization of the use of BeagleV-Fire connectors.

5.4.1 Gateware Architecture

The diagram below is a simplified overview of the gateware’s structure.

The overall gateware is made-up of several blocks, some of them interchangeable. These blocks are all clocked
and reset by another “Clock and Resets” block not showed in the diagram for clarity. A 125MHz, and a 160MHz
clock are provided for use by the gateware blocks.

50 Chapter 5. Demos

BeagleV-Fire

5.4. Gateware Design Introduction 51

BeagleV-Fire

Each gateware block is associated with one of BeagleV-Fire’s connectors.

All gateware blocks have an AMBA APB target interface for software to access control and status registers
defined by the gateware to operate digital logic defined by the gateware block. This is the software’s control
path into the gateware block.

Some gateware blocks also have an AMBA AXI target and/or source interfaces. The AXI interfaces are typically
used tomove high volume of data at high throughput in and out of DDRmemory. For example, the M.2 gateware
uses these interfaces to transfer data in and out of its PCIe root port.

Cape Gateware

The cape gateware handles the P8 and P9 connectors signals. This is where support for specific capes is
implemented.

This is a very good place to start learning about FPGA and how to customize gateware.

SYZYGY Gateware

The SYZYGY gateware handles the high-speed connector signals. This connector includes:

• up to three transceivers capable of 12.7Gbps communications

• One SGMII interface

• 10 high-speed I/Os

• Clock inputs

There is a lot of fun that can be had with this interface given its high-speed capabilities.

Please note that only two tranceivers can be used when the M.2 interface is enabled.

MIPI-CSI Gateware

The MIPI gateware handles the signals coming from the camera interface.

Gateware for the MIPI-CSI interface is Work-In-Progress.

M.2 Gateware

The M.2 gateware implements the PCIe interface used for Wi-Fi modules. It connects the processor subsystem
to the PCIe controller associated with the tranceivers bank.

There is limited fun to have here. You either include this block or not in your bitstream.

The M.2 gateware uses one of the four available 12.7 Gbps transceivers. Only two out of the three SYZYGY
tranceivers can be used when the M.2 is included in the bitstream. This gateware needs to omited from the
bitstream if you want to use all three 12.7Gbps transceivers on the SYZYGY high-speed connector.

RISC-V Processors subsystem

The RISC-V Processors Subsystem also includes some gateware mostly dealing with exposing AMBA bus inter-
faces for the other gateware blocks to attach to. It also handles immutable aspects of the gateware related to
how some PolarFire-SoC signals are used to connect BeagleV-Fire peripherals such as the ADC and EEPROM. As
such the RISC-V Processors Subsystem gateware is not intended to be customized.

52 Chapter 5. Demos

BeagleV-Fire

5.5 How to retrieve BeagleV-Fire’s gateware version

There are two methods to find out what gateware is programmed on a board.

5.5.1 Device Tree

The device tree overlays contains the list of gateware blocks included in the overall gateware design. You can
retrieve that information using the following command:

tree /proc/device-tree/chosen/overlays/

This should give an output similar to the one below.

The gateware version can be retrieve by reading one of the overlay files. For example, the command:

cat /proc/device-tree/chosen/overlays/ROBOTICS-CAPE-GATEWARE

should result in:

where the result of a “git describe” command on the gateware repository is displayed. This provides the most
recent tag on the gateware repository followed by information about additionanl commits if some exist. In the
example above, the gateware was created from a gateware repository hash 3e0d338 which is 5 commits more
recent than tag BVF-0.3.0.

5.5.2 Bootloader messages

The Hart Software Services display the gateware design name and design version retrieve from the FPGA at
system start-up.

The design name is the name of the build option selected when using the bitstream-builder to generate the
bitstream. The number at the end of the design name is the hash of the gateware repository used to build the
bitstream.

The design version is specified as part of the bitstream-builder build configuration option.

Please note that design name “BVF_GATEWARE” indicates that the bitstream used to program the board was
generated directly from the gateware repositories scripts and not the bitstream-builder. You might see this
when customizing the gateware. Seeing “BVF_GATEWARE” as the design name should be a warning sign that
there is a disconnect between the hardware and software on your board.

5.5. How to retrieve BeagleV-Fire’s gateware version 53

BeagleV-Fire

5.6 Building Linux for BeagleV-Fire using Buildroot

5.6.1 Introduction

Buildroot is a simple, efficient, and user-friendly tool for creating custom embedded Linux systems through
cross-compilation.

This document provides a guide for building and flashing a Linux image on the BeagleV-Fire board with Buildroot.
It outlines the process for compiling the image, writing image to the eMMC, and booting the new operating
system.

Hardware requirements:

1. BeagleV-Fire board

2. USB-C cable

3. 3.3v USB to UART bridge

Connect BeagleV-Fire UART debug port using 3.3v USB to UART bridge.

Software requirements:

Download Buildroot repository from GitHub.

5.6.2 Start Building

Note: The following steps are intended for a Linux operating system.

To build and flash Linux image using Buildroot,

54 Chapter 5. Demos

https://github.com/buildroot/buildroot

BeagleV-Fire

Step 1. Navigate to the Buildroot directory

cd buildroot

Step 2. Configure the Build for BeagleV-Fire

Configure the build by selecting the default board configuration:

make beaglev_fire_defconfig

Step 3. Customise the build (Optional)

If you need to customize the build, use the following command:

make menuconfig

Step 4: Start the build process

make

Note: The build process can take 20-30 minutes for a clean build.

Step 5. Locate the build image

Once the build is complete, the Linux image will be saved as sdcard.img in the /output/images/ directory. The
directory structure will look something like this:

$ ls output/images/
boot.scr boot.vfat.bmap dts/ Image.gz mpfs_
↪→icicle/ mpfs_icicle.its rootfs.cpio rootfs.tar sdcard.img ␣
↪→ sdcard.img.gz
boot.vfat boot.vfat.gz Image microchip/ mpfs_
↪→icicle.itb payload.bin rootfs.cpio.gz sdcard.bmap sdcard.img.
↪→bmap u-boot.bin

Step 6. Flash the Image to BeagleV-Fire’s eMMC

• Restart the board and halt the HSS (Hart Software Services) by pressing any key

• In the HSS command line interface, type usbdmsc to expose the eMMC as a USB mass storage device
using the USB-C connector.

• If successful, a message saying “USB Host connected” will be displayed

• Now, copy the image from local machine to BeagleV-Fire’s eMMC

sudo dd if=output/images/sdcard.img of=/dev/sdX bs=1M

Note: You need to replace /dev/sdX with the actual device name of your eMMC. Be very careful not to overwrite
the wrong drive, as this action is irreversible.

• Once the transfer is complete, type CTRL+C to disconnect your device

• Finally boot the new Linux image by typing boot or reset your board

5.6. Building Linux for BeagleV-Fire using Buildroot 55

BeagleV-Fire

Detailed description of this step is mentioned in Flashing eMMC section.

5.7 Gateware Full Build Flow

5.7.1 Introduction

BeagleV-Fire gateware is made up of several components:

• Digital design for the FPGA fabric.

• Microprocessor Subsystem (MSS) configuration containing MSS configuration register values.

• A zero stage bootloader (HSS).

• A set of device tree ovelays describing the content of the FPGA fabric.

The FPGA’s digital design is a combination of:

• HDL/Verilog source code

• TCL scripts configuring IP blocks

• TCL scripts stiching IP blocks together

• Microprocessor Subsystem (MSS) configuration describing the MSS port list

• Pin, placement and timing constraints

The Hart Software Service (HSS) zero stage bootloader

• Configures the PolarFire SoC chip.

• Retrieves the next boot stage from eMMC and hand-over to the next boot stage (e.g. u-boot)

• Makes the board appear as a USB mass-storage for populating the eMMC with secondary boot-loader and
operating system image.

The chip configuration applied by the HSS icludes the configuration of:

• Clocks

• Memory controllers

• IOs

• Transceivers

Of course all these components need to be in synch with each other for the system to work properly. This is
the reason for using a gateware build system rather than building and tracking each component individually.

5.7.2 Programming artifacts

The gateware builder for BeagleV-Fire produces two programming artifacts:

• A bitstream containing the FPGA fabric and eNVM programming

• A device tree overlay describing the FPGA content.

These two artifacts are packaged differently depending on the programming method. They are merged into
a single programming file for DirectC (.dat) and FlashPro Express (.job). They are kept separate for Linux
programming (mpfs_bitstream.spi and mpfs_dtbo.spi).

56 Chapter 5. Demos

BeagleV-Fire

5.7.3 Programming BeagleV-Fire with new gateware

There are several methods possible for programming the BeagleV-Fire with new gateware:

• Linux script executed on the BeagleV-Fire board.

• Running DirectC on anothe single board computer

• Using Microchip’s FlashPro Express

Linux script

This is the recommended approach. It does not require any additional hardware. Simply run the script located
in /usr/share/beagleboard/gateware. You should use this methods unless you have soft-bricked your BeagleV-
Fire.

DirectC

This approach uses a single board computer (SBC) connected to the BeagleV-Fire JTAG port. The SBC bit-
bangs the FPGA programming protocol over GPIOs. This approach is only required for recovering a soft-bricked
BeagleV-Fire.

FlashPro Express

This approach uses Microchip’s FlashPro Express programming software and a FlashPro6 JTAG programmer. I
would recommend using the Linux script even if you are an existing Microchip FPGA user with all the tools.
This approach makes most sense when doing bare metal software development and already have a FlashPro
programmer and don’t care about device tree overlays.

5.7. Gateware Full Build Flow 57

BeagleV-Fire

5.8 Gateware TCL Scripts Structure

This document describes the structure of the gateware TCL scripts. It is of interest to understand how to extend
or customize the gateware.

The Libero SoC TCL Command Reference Guide describes the TCL command used in the gateware scripts.

5.8.1 Gateware Project

The gateware project is made up of:

• TCL scripts

• HDL/Verilog source code

• IO pin constraints

• Placement constraints

• Device tree overlays

All these files are found in the FPGA-design directory.

5.8.2 Gateware Components

The gateware is organized into 6 components:

• Clocks and reset control

• A base RISC-V microprocessor subsystem

• Cape interface

• M.2 interface

• MIPI camera interface

• SYZYGY high speed interface

5.8.3 Gateware Build Options

Each interface component may have a number of build options. For example, which cape will be supported by
the generated gateware.

The name of the directories within the component’s directory are the option names passed to the top Libero
BUILD_BVF_GATEWATE.tcl script. These directory names are the option name specified in the bitstream
builder’s build option YAML files.

58 Chapter 5. Demos

https://coredocs.s3.amazonaws.com/Libero/2023_2/Tool/libero_soc_tcl_cmd_ref_ug.pdf

BeagleV-Fire

5.8. Gateware TCL Scripts Structure 59

BeagleV-Fire

The gateware is extended or customized by creating additional directories within the component directory of
interest. For example, add a MY_CUSTOM_CAPE directory under the CAPE directory to add a gateware build
option to support a custom cape.

5.8.4 Gateware Component Directories

The component directory contains subdirectories for:

• Constraint files

• Device tree overlay

• Optional HDL/Verilog source code

Gateware TCL Scripts

The component directory contains the TCL scripts executed by Libero to generate the gateware. The TCL script
framework executes a hand-crafted ADD_<COMPONENT_NAME>.tcl script which instantiates the component
and stiches it to the base RISC-V subsystem and top level IOs. The other TCL scripts are typically IP configuration
scripts and SmartDesign stiching scripts.

60 Chapter 5. Demos

BeagleV-Fire

5.8.5 Opening the gateware as a libero project

It can be slightly difficult to explore the gateware design through the TCL files. To inspect the gateware design
in detail easily, you can open the gateware as a Libero project. This is done by running the following command
in the gateware directory:

python build-bitstream.py ./build-options/default.yaml # build option␣
↪→depending on the gateware

You will need to have all microchip tools installed and the environment variables set up correctly. Refer to the
Microchip tools installation guide for information on how to install these tools.

5.9 Customize BeagleV-Fire Cape Gateware Using Verilog

This document describes how to customize gateware attached to BeagleV-Fire’s cape interface using Verilog
as primary language. The methodolgy described can also be applied when using other HDL languages.

It will describe:

• How to generate programming bitstreams without requiring the installation of the Libero FPGA toolchain
on your development machine.

• How to use the cape Verilog template

• How to use the git.beagleboard.org CI infrastruture to generate programming bitstreams for your custom
gateware

Steps:

1. Fork BeagleV-Fire gateware repository on git.beagleboard.org

2. Create a custom gateware build option

3. Rename a copy of the cape gateware Verilog template

4. Customize the cape’s Verilog source code

5. Commit and push changes to your forked repository

6. Retrieve the forked repositories artifacts

7. Program BeagleV-Fire with your custom bitstream

5.9.1 Fork BeagleV-Fire Gateware Repository

Important: All new users need to be manually approved to protect from BOT spam. You will not be able to
fork the Gateware Repository until you have been approved. A request to the forum may expedite the process.

Navigate to BeagleV-Fire’s gateware source code repository.

Click on the Forks button on the top-right corner.

Fig. 5.11: BeagleV-Fire gateware repo fork button

On the Fork Project page, select your namespace and adjust the project name to help you manage multiple
custom gateware (e.g. my-lovely-gateware). Click the Fork project button.

5.9. Customize BeagleV-Fire Cape Gateware Using Verilog 61

https://forum.beagleboard.org/t/requesting-access-to-gitlab-to-fork-gateware/37494
https://git.beagleboard.org/beaglev-fire/gateware

BeagleV-Fire

Fig. 5.12: Create gateware fork

Clone the forked repository

git clone git@git.beagleboard.org:<MY-NAMESPACE>/my-lovely-gateware.git

Where <MY-NAMESPACE> is your Gitlab username or namespace.

5.9.2 Create A Custom Gateware Build Option

BeagleV-Fire’s gateware build system uses “build configuration” YAML files to describe the combination of
gateware components options that will be used to build the gateware programming bitstream. You need to
create one such file to describe to the gateware build system that you want your own custom gateware to be
built. You need to have one such file describing your gateware in directory custom-fpga-design.

Let’s modify the ./custom-fpga-design/my_custom_fpga_design.yaml build configuration
file to specify that your custom cape gateware should be included in the gateware bitstream. In this instance
will call our custom cape gateware MY_LOVELY_CAPE.

HSS:
type: git
link: https://github.com/polarfire-soc/hart-software-services.git
branch: master
make_clean: 1

gateware:
type: sources
build-args: ”M2_OPTION:NONE CAPE_OPTION:MY_LOVELY_CAPE” # �

① On the gateware build-args line, replace VERILOG_TUTORIAL with MY_LOVELY_CAPE.

Note: The custom-fpga-design directory has a special meaning for the Beagleboard Gitlab CI system.
Any build configuration found in this directory will be built by the CI system. This allows generating FPGA
programming bitstreams without the requirement for having the Microchip FPGA toolchain installed on your
computer.

5.9.3 Rename A Copy Of The Cape Gateware Verilog Template

62 Chapter 5. Demos

BeagleV-Fire

Move to the cape gateware source code

cd my-lovely-gateware/sources/FPGA-design/script_support/components/CAPE

Create a directory that will contain your custom cape gateware source code

mkdir MY_LOVELY_CAPE

Copy the cape Verilog template

cp -r VERILOG_TEMPLATE/* ./MY_LOVELY_CAPE/

5.9.4 Customize The Cape’s Verilog Source Code

You will only need to change the content of ADD_CAPE.tcl if you want to modify how the cape interfaces
with the rest of the gateware
(RISC-V processor subsystem, clock and reset blocks).

Tip:

Any Verilog file (*.v) you put in the HDL subdirectory will automatically be pulled into the project by the build
system.
Manual intervention is no longer required.

Customize The Cape’s Verilog source code

We will add a simple Verilog source file, blinky.v, in the MY_LOVELY_CAPE/HDL directory. Code below:

`timescale 1ns/100ps

module blinky (
input clk,
input resetn,
output blink

);

reg [22:0] counter;

assign blink = counter[22];

always @(posedge clk, negedge resetn)
begin

if(~resetn)
begin
counter <= 23'b0;

end
else
begin
counter <= counter + 23'b1;

end
end

(continues on next page)

5.9. Customize BeagleV-Fire Cape Gateware Using Verilog 63

BeagleV-Fire

(continued from previous page)

endmodule

Let’s connect the blinky Verilog module within the cape by editing the CAPE.v file (we’re still in the HDL
subdirectory).

Add the instantiation of the blinky module:

//--------P9_41_42_IOPADS
P9_41_42_IOPADS P9_41_42_IOPADS_0(

// Inputs
.GPIO_OE (GPIO_OE_const_net_3),
.GPIO_OUT (GPIO_OUT_const_net_3),
// Outputs
.GPIO_IN (),
// Inouts
.P9_41 (P9_41),
.P9_42 (P9_42)
);

//--------blinky
blinky blinky_0(// �

.clk (PCLK), // �

.resetn (PRESETN), // �

.blink (BLINK) // �
);

endmodule

① Create a blinky module instance called blinky_0.

② Connect the clock using the existing PCLK wire.

③ Connect the reset using the exisitng PRESETS wire.

④ Connect the blinky’s blink output using the BLINK wire. This BLINK wire needs to be declared.

Add the BLINK wire:

wire PCLK;
wire PRESETN;
wire BLINK; // �
wire [31:0] APB_SLAVE_PRDATA_net_0;
wire [27:0] GPIO_IN_net_1;

① Create a wire called BLINK.

The BLINK wire will be used to connect the blinky module’s output to a top level output connected to a LED.
Do you see where this is going?

Now for the complicated part. We are going to change the wiring of the bi-directional buffers
controlling the cape I/Os including the user LEDs.

The original code populates two 43 bit-wide vectors,
for controlling the output-enable and output values of the P8 cape connector I/Os.

The bottom 28 bits being controlled by the microprocessor subsystem’s GPIO block; those are the ones we
want.

64 Chapter 5. Demos

BeagleV-Fire

//--
// Concatenation assignments
//--
assign GPIO_OE_net_0 = { 16'h0000 , GPIO_OE };
assign GPIO_OUT_net_0 = { 16'h0000 , GPIO_OUT };

We are going to hijack the 6th I/O with our blinky’s output:

//--
// Concatenation assignments
//--
assign GPIO_OE_net_0 = { 16'h0000, GPIO_OE[27:6], 1'b1, GPIO_OE[4:0] }; ␣
↪→ // �
assign GPIO_OUT_net_0 = { 16'h0000, GPIO_OUT[27:6], BLINK, GPIO_OUT[4:0] }; ␣
↪→ // �

① Tie high the output-enable of the 6th bit to constantly enable that output.

② Control the 6th output from the blink module through the BLINK wire.

Edit The Cape’s Device Tree Overlay

You should always have a device tree overlay associated with your gateware even if there is limited control
from Linux.
The device tree overlay is very useful to identify which gateware is currently programmed on your
BeagleV-Fire.

/dts-v1/;
/plugin/;

&{/chosen} {
overlays {

MY-LOVELY-CAPE-GATEWARE = ”GATEWARE_GIT_VERSION”; // �
};

};

① Replace VERILOG-CAPE-GATEWARE with MY-LOVELY-CAPE-GATEWARE.

This change will result in MY-LOVELY-CAPE-GATEWARE being visible in
/proc/device-tree/chosen/overlays at run-time,
allowing to check that my lovely gateware is successfully programmed on BeagleV-Fire.

5.9.5 Commit And Push Changes To Your Forked Repository

Move back up to the root directory of your gateware project. This is the my-lovely-gateware directory in our
current example.

Add the my-lovely-gateware/sources/FPGA-design/script_support/
components/CAPE/MY_LOVELY_CAPE directory content to your git repository.

git add sources/FPGA-design/script_support/components/CAPE/MY_LOVELY_CAPE/

Commit changes to my-lovely-gateware/custom-fpga-design/
my_custom_fpga_design.yaml

5.9. Customize BeagleV-Fire Cape Gateware Using Verilog 65

BeagleV-Fire

git commit -m ”Add my lovely gateware.”

Push changes to your beagleboard Gitlab repository:

git push

5.9.6 Retrieve The Forked Repositories Artifacts

Navigate to your forked repository. Click Pipelines in the left pane then the Download Artifacts button on the
right handside.
Select build-job:archive. This will result in an artifacts.zip file being downloaded.

Fig. 5.13: gateware pipeline

5.9.7 Program BeagleV-Fire With Your Custom Bitstream

Unzip the downloaded artifacts.zip file. Go to the gateware-builds-tester/artifacts/
bitstreams directory:

cd gateware-builds-tester/artifacts/bitstreams

On your Linux host development computer, use the scp command to copy the bitstream to BeagleV-Fire
home directory,
replacing <IP_ADDRESS> with the IP address of your BeagleV-Fire.

scp -r ./my_custom_fpga_design beagle@<IP_ADDRESS>:/home/beagle/

On BeagleV-Fire, initiate the reprogramming of the FPGA with your gateware bitstream:

sudo /usr/share/beagleboard/gateware/change-gateware.sh ./my_custom_fpga_
↪→design

Wait for a couple of minutes for the BeagleV-Fire to reprogram itself.

You will see the 6th user LED flash once the board is reprogrammed.
That’s the Verilog you added blinking the LED.

On BeagleV-Fire, You can check that your gateware was loaded using the following command
to see the device tree overlays:

66 Chapter 5. Demos

BeagleV-Fire

tree /proc/device-tree/chosen/overlays/

Fig. 5.14: gateware lovely overlay

5.10 How to use PicoRV Softcore on BeagleV-Fire

5.10.1 Introduction

The PicoRV Softcore is a 32-bit RISC-V CPU subsystem on the BeagleV-Fire’s FPGA fabric, functionally equivalent
to the PRU subsystem on the BeagleBone Black. The core is designed for low-latency I/O operations and
offloading smaller tasks like PWM, LEDs, etc .

5.10.2 Prerequisites

To be able to use the softcore component, you’ll need to have following packages installed on your host com-
puter:

• gcc-riscv64-unknown-elf

• picolibc-riscv64-unknown-elf

Note: These packages are used for compiling the code for the softcore.

For debian-based systems like ubuntu, you can use following commands:

sudo apt install gcc-riscv64-unknown-elf picolibc-riscv64-unknown-elf

If you are using any other linux distro these packages can be downloaded from respective package managers.
But, it is highly recommended to use docker for accurate results.

Docker installation steps.

Once you have docker installed:

1. Start a container with ubuntu image.

2. Install the required toolchain using above mentioned command (remember not to use ‘sudo’ in docker).

Sudo docker run -it ubuntu:latest

After installing the necessary tools, you are all set for using the Softcore.

5.10.3 How to use the Softcore

5.10. How to use PicoRV Softcore on BeagleV-Fire 67

https://docs.docker.com/engine/install

BeagleV-Fire

1. Boot the softcore with firmware

Step 1 Navigate to sources/FPGA-design/script_support/components/SOFTCORE/
PICO_RISCV/firmware in the BeagleV-Fire repository.

Step 2 Edit the firmware.c file by adding your code in the main function. You can create your own custom
file but remember to use firmware.h file for pre-defined functions to access gpios.

Step 3 Now run the generatehex.sh to compile the code. (remember to edit the file name in the script
of you are using custom file)

. ./generatehex.sh

If you are using docker clone the repository on your docker container or use docker copy, then compile the
program and use docker copy to obtain the hex file.

To copy file from local system to docker container:

docker cp ./path/to/file CONTAINER:/path/to/directory

To copy file from docker container to local system:

docker cp CONTAINER:/path/to/file /path/to/directory

To check the name of docker ‘CONTAINER’:

docker ps -a

This will list all the running and stopped containers To restart a stopped container, use:

sudo docker start name_of_container -i

Step 4 Select PicoRV build option for bitstream generation

Once the code is compiled, build the bitstream using the ‘build-bitstream.py’ script.

python build-bitstream.py ./build-options/picorv-softcore.yaml

Note: The Gitlab CI does not support the softcore code compilation yet, so the bitstream must be generated
locally.

Step 5 Program BeagleV-Fire With Your Custom Bitstream.

2. Programming the softcore in run-time

Step 1

• Program the softcore with custom bitstream with picorv-softcore build-option.

• Follow the steps mentioned in previous section.

Step 2

• Edit and compile your new code in your local machine.(BeagleV-Fire does not support on-board compila-
tion for softcore programs yet, this feature will be added soon.)

• Follow Steps 2 and 3 in previous section for compiling your new program.

68 Chapter 5. Demos

BeagleV-Fire

Step 3 Copy the firmware directory from BeagleV-Fire repository to your board.

sudo scp -r path/to/firmware beagle@192.168.7.2:/home/beagle

Step 4

• Overwritting softcore’s program memory.

• Compile the ‘AXI_test.c’ file using gcc and execute it.

gcc -o AXI_test AXI_test.c
sudo ./AXI_teste

• This will open a interactivemenu with various option that you can try out and access the programmemory
of the softcore.

• Here we will select option 2 to upload the hex file we just compiled to the softcore.

Note: This compilation in step 2 is to generate a hex file to program the Softcore, while the compilation in
Step 3 is performed to command the Linux system on-board to access the program memory of the Softcore.

Note: The filename in AXI_test.c for the hex file is set as firmware.hex, so make sure the name of the
hex file you compiled is the same else change the filename pointer in AXI_test.c.

Repository

PicoRV softcore builder.

5.11 How to build the BeagleV-Fire Gateware on Windows

5.11.1 Introduction

The BeagleV-Fire gateware builder is a Python script that builds both the PolarFire SoC HSS bootloader and
Libero FPGA project into a single programming bitstream. It uses a list of repositories/branches specifying the
configuration of the BeagleV-Fire to build.

5.11.2 Prerequisites

Tools

To be able to use the bitstream builder on Windows, you will need to install the following tools:

• Msys2-Mingw

• Make

• wsl

Please follow the installation instructions for Msys2 available at https://www.msys2.org/wiki/MSYS2-installation/

When installing make in your mysys2 terminal you’re recommended to use the default command

pacman -S make

For those requiring a specific version ofmake, refer to the porting guide at https://www.msys2.org/wiki/Porting/

5.11. How to build the BeagleV-Fire Gateware on Windows 69

https://openbeagle.org/gsoc/2024/riscv-io-core/
https://www.msys2.org/wiki/MSYS2-installation/
https://www.msys2.org/wiki/Porting/

BeagleV-Fire

pacman -S <target>-make

Ensure that the Msys2 bin path (e.g., C:msys64usrbin) is added to your system’s environment variable PATH.

To enable and install WSL, follow these steps:

• Search for “Turn Windows features on or off” in the Windows start menu.

• Select “Windows Subsystem for Linux” and click OK.

• Open a command prompt as an administrator and execute:

wsl.exe --install

After installing the necessary tools, proceed to the repository and follow the instructions in the README to build
the bitstream on Windows

Repository

Access the BeagleV-Fire gateware builder repository at https://openbeagle.org/cyril-jean/
gateware-maintenance/

Note: If you encounter an end-of-line error (CRLF/LF) during the build process, change the local Git configu-
ration core.autocrlf to false and clone the repository again

git config --global core.autocrlf false

Note:

• Should the build fail due to an unrecognized Python package, despite the package being installed, it may
be due to multiple Python/pip versions. Reinstall the package using.

python -m pip install <package-name>

• Verify that the LM_LICENSE_FILE environment variable includes licenses for all required programs to avoid
silent errors during the build process

5.12 Exploring Gateware Design with Libero

In this demonstration, we’ll be exploring the BeagleV-Fire gateware in the Libero Design Suite, making changes
to the default gateware. This demo will serve as an introduction to the design tool, an alternative method for
developing gateware.

5.12.1 Prerequisites

The prerequisites required for creating the Libero project locally are:

1. Microchip design tools: Refer to the document here for installation instructions of microchip FPGA tools.

2. Python requirements for gateware build scripts:

pip3 install gitpython
pip3 install pyyaml

3. Build requirements:

70 Chapter 5. Demos

https://openbeagle.org/cyril-jean/gateware-maintenance/
https://openbeagle.org/cyril-jean/gateware-maintenance/
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/fpga/libero-software-later-versions

BeagleV-Fire

sudo apt install device-tree-compiler

Tip: For convience, you can install a python command alias like so:

sudo apt install python-is-python3

This is optional, but remember to use python3 in later command examples if you don’t.

4. Environment variables: The following environment variables are required for compilation:

• SC_INSTALL_DIR

• FPGENPROG

• LIBERO_INSTALL_DIR

• LM_LICENSE_FILE

A script is provided for setting up these variables in the fpga tools installation section.
An example script for setting up the environment is available here.

5. It is highly recommended to go through the Customize BeagleV-Fire Cape Gateware Using Verilog tutorial to
understand the basics of the gateware structure.

5.12.2 Cloning and Building the Gateware

First, we must source the environment to include the microchip tools.

source /path/to/microchip/fpga/tools/setup-microchip-tools.sh

Next, we’ll clone the gateware repository to get a local copy of the project.

git clone https://openbeagle.org/beaglev-fire/gateware.git
cd gateware

We can then use the build-bitstream.py script to generate a Libero project for us,
where we can start making our changes.

Important:

Make sure to source the microchip setup script before starting the next command.
This is required every time you open a new terminal.

python build-bitstream.py ./build-options/default.yaml # exploring the␣
↪→default gateware

This should start a big log stating the compilation of the project. First, the device tree overlays are compiled,
which contain information for linux about the gateware.

Next, the Hart Software Services (HSS) is compiled. This acts as a zero-stage bootloader, configuring the
Polarfire SoC and allowing services like loading the next stage bootloader and flashing the eMMC of the board.

5.12. Exploring Gateware Design with Libero 71

https://openbeagle.org/beaglev-fire/Microchip-FPGA-Tools-Setup

BeagleV-Fire

Then the libero project generating is started. Here, TCL scripts inside the sources directory are executed,
starting with the BUILD_BVF_GATEWARE.tcl script. This stitches each HDL module, IP, hardware con-
figuration together in the gateware.

Once bitstream generation is completed, the Libero project is ready to be opened.
Start Libero on the same terminal in linux, like so:

libero &

or from the start menu in Windows, and open the project file by pressing CTRL+O and selecting the generated
project as gateware/work/libero/BVF_GATEWARE_025T.prjx .

Fig. 5.15: Libero project location

5.12.3 Exploring The Design

Let the IDE load everything, and then you’re all set to browse around! You can go to theDesign Hierarchy
view to look at all Smart Design components. Here, all the gateware components are listed in block-like views.
Double click the DEFAULT_****** option in the hierarchy to have a look at the whole gateware. You should
also be able to see the cape, M.2 interface and the RISC-V subsystem modules. These modules are explained
in Gateware Introduction.

72 Chapter 5. Demos

BeagleV-Fire

Fig. 5.16: Libero gateware overview

5.12.4 Adding Custom HDL

Once you’re done exploring, we can start by adding our first HDL to the design.
Create a new HDL file through the menu bar, and name it blinky.
Once created, you can find the HDL file under the User HDL Source Files

heading in the Design Hierarchy.

Fig. 5.17: Adding new HDL

Next, add this code to the file:

`timescale 1ns/100ps
module blinky(
input clk,
input resetn,
input [27:0] gpio_out,
input [27:0] gpio_enable,
output [27:0] modified_gpio,

(continues on next page)

5.12. Exploring Gateware Design with Libero 73

BeagleV-Fire

(continued from previous page)

output [27:0] modified_gpio_enable
);

reg [22:0] counter;
assign modified_gpio = {gpio_out[27:6], counter[22], gpio_out[4:0]};
assign modified_gpio_enable = {gpio_enable[27:6], 1'b1, gpio_enable[4:0]};

always@(posedge clk or negedge resetn)
begin

if(~resetn)
begin

counter <= 23'h0;
end

else
begin

counter <= counter + 23'b1;
end

end
endmodule

After saving it, press the Build Hierarchy button in the Design Hierarchy window to refresh it,
and bring the added HDL to the work directory.
Right click on it to select the “Create Core from HDL….” option.
Press No on the dialog that follows since we’ve described the ports completely in our HDL.

Now, double click the CAPE design under the DEFAULT_**** smart design,
to have a look at what’s in the cape.

Drag and drop the blinky file appearing in the work section into the cape design.
You will have successfully instantiated the new verilog file into the cape smart design.

Making The Connections

You should see the blinky module within the CAPE design,
and it should be fairly obvious where we’re going to be connecting
the module if you’ve gone through the previous demo.

First, delete the wires connecting the GPIO_OUT and GPIO_OE to the CAPE_DEFAULT_GPIOSmodule.
Then, simply connect the GPIO_OUT and the GPIO_OE terminals of the cape
to the gpio_out and the gpio_enable pins respectively.
Similarly connect the outputs of the blinky module to the CAPE_DEFAULT_GPIOS module.

Finally, connect the CLK and the RESET pins to the PCLK and the PRESETN pins below in the cape.
You can use the compress layout button in the toolbar to make the design neat once you’re done
connecting the wires.

74 Chapter 5. Demos

BeagleV-Fire

Fig. 5.18: Create core from HDL

5.12. Exploring Gateware Design with Libero 75

BeagleV-Fire

Fig. 5.19: Add blinky to cape

Fig. 5.20: Connect blinky to cape

76 Chapter 5. Demos

BeagleV-Fire

Go ahead and save the CAPE file.
You can also verify the design by pressing the checkmark icon in the editor toolbar.
Now, it’s time to export our design back to the gateware repository.

Tip: You will hear Exporting and Backannotation used interchangeably; it’s the same thing.

5.12.5 Exporting The Design

Exporting the Cape

The SmartDesigns you have changed should show an “i” icon in front of them indicating
that they need to be regenerated.
First, regenerate the designs by right clicking on them and selecting “Generate Component”.
Rebuild the Hierarchy too as we’ve done before.

Next, right-click on the cape and select “Export Component Description (TCL)” to export it
as a script which can be used in the gateware repository.
I suggest creating an export directory where you can temporarily store the exported gateware files before
getting them into the repository.

Important: You must make sure your path exist, because Libero does not currently tell you if the export is
successfull or not.

Now, simply copy it into the gateware at the following path.

cp ~/export/gateware/CAPE.tcl ~/gateware/sources/FPGA-design/script_support/
↪→components/CAPE/DEFAULT/

Tip:

You will find that sometimes Libero can export a TCL file that’s quite different from what you started out with,
even when you’ve only made relatively small changes.
It is worth spending a little time to look at the changes with a tool like git diff (VS Code works really well too),
to make sure Libero didn’t just run off on a tangent with your code.

Exporting The HDL

To add new HDL to the gateware repository, first we need to copy it
to the HDL directory at sources/FPGA-design/script_support/components/CAPE/DEFAULT/HDL.
You can do that by just creating a folder named blinky inside and copying the HDL to it.

mkdir ~/gateware/sources/FPGA-design/script_support/components/CAPE/DEFAULT/
↪→HDL

5.12. Exploring Gateware Design with Libero 77

BeagleV-Fire

Fig. 5.21: Regenerate designs

78 Chapter 5. Demos

BeagleV-Fire

cp ~/gateware/work/libero/hdl/blinky.v ~/gateware/sources/FPGA-design/script_
↪→support/components/CAPE/DEFAULT/HDL/

Now, to add the TCL script to import this design for the CAPE scripts,
we can export the script by right-clicking on the HDL file in the Design Hierarchy and select Export
Component Description.

Now, copy this exported file to our gateware’s CAPE directory at gateware/sources/FPGA-
design/script_support/components/CAPE/DEFAULT/ like so:

cp blinky.tcl ~/gateware/sources/FPGA-design/script_support/components/CAPE/
↪→DEFAULT/blinky_config.tcl

Then we make sure it’s getting sourced by adding the following to ADD_CAPE.tcl:

Verify your script as above, save it and now you’re good to compile your project!

Important:

Make sure you close Libero at this point.
If you don’t, build-bitstream.py will fail to properly checkout the required licenses.

Now is a good time to check in your changes to git:

cd ~/gateware
git add ./sources/FPGA-design/script_support/components/CAPE/DEFAULT/CAPE.tcl
git add ./sources/FPGA-design/script_support/components/CAPE/DEFAULT/ADD_
↪→CAPE.tcl
git add ./sources/FPGA-design/script_support/components/CAPE/DEFAULT/blinky_
↪→config.tcl
git add ./sources/FPGA-design/script_support/components/CAPE/DEFAULT/HDL/
↪→blinky.v
git clean -df

5.12.6 Final Verification

Go ahead and run the python script to build the gateware and verify your changes:

python build-bitstream.py ./build-options/default.yaml

If at any point the compilation fails, you can debug the script at the mentioned line.
If it compiles successfully, it will mention it by saying:

The Execute Script command succeeded.
The BVF_GATEWARE_025T project was closed.

With a little luck, the script completes successfully and you can
now send your changes onto your gateware repository fork,

5.12. Exploring Gateware Design with Libero 79

BeagleV-Fire

Fig. 5.22: Export HDL

80 Chapter 5. Demos

BeagleV-Fire

download the artifacts after compilation,
and program the gateware using the change_gateware.sh script.

Tip: For a more direct route you can copy the generated bitstream straight to your Beagle and try the result
immidiately:

scp -r ./bitstream beagle@<ip or name here>:

On the beagle, use:

sudo /usr/share/beagleboard/gateware/change-gateware.sh ./bitstream

Have fun!

5.13 Simulating Gateware Design with Libero

In this demonstration, we will have a look at simulating the gateware design in Libero. Through simulations,
one can verify the functionality of the design before implementing it on the hardware. The simulation is done
using the ModelSim simulator, which is integrated with Libero. The gateware design that we will simulate is
the blinky LED design, present in the VERILOG_TUTORIAL gateware option.

5.13.1 Prerequisites

1. Libero SoC 2022 or later. You can follow this guide to install Libero SoC: Microchip FPGA Tools Installation
Guide.

2. A copy of the gateware repository.

3. The setup_microchip_tools.sh file, to start the license server and set the environment vari-
ables. The setup of this script is also covered in the installation guide.

5.13. Simulating Gateware Design with Libero 81

https://openbeagle.org/beaglev-fire/gateware/

BeagleV-Fire

5.13.2 Setting up ModelSim

Modelsim requires certain libraries to be present in the system, which might not be installed by default. You
can check if ModelSim is working by:

source setup_microchip_tools.sh
$LIBERO_INSTALL_DIR/ModelSimPro/linuxacoem/vsim

If ModelSim is not working due to missing libraries, you might see an error message like:

vsim: error while loading shared libraries: libXft.so.2: cannot open shared␣
↪→object file: No such file or directory

To fix this, you can install the required libraries using the following command:

sudo apt-get install libxft2 libxft2:i386 lib32ncurses5

If you still cannot run ModelSim, you can try fixes from this guide.

5.13.3 Simulating the Blinky LED Design

To start with the simulation, we must first compile the gateware design. The blinky LED design is present in
the VERILOG_TUTORIAL gateware option. To compile the design, follow the steps below:

1. First, compile the gateware design using the following command:

cd gateware
python build-bitstream.py custom-fpga-design/my_custom_fpga_design.yaml

1. Once the design is compiled, open the Libero SoC software and select the created project. You can find
the project in the work/libero directory.

2. Once the project is opened, your window should look something like this. In front of you will be the
overview of the gateware design, and on the left you will havemultiple tabs showing the design hierarchy,
design flow, etc.

82 Chapter 5. Demos

https://profile.iiita.ac.in/bibhas.ghoshal/COA_2020/Lab/ModelSim%20Linux%20installation.html

BeagleV-Fire

1. For the simulation, testbench files will need to be set up, which will be used to simulate the design.
This can be done from the stimulus hierarchy. However, for this example we will be using the default
testbench files provided by libero.

2. To set up the simulation, go to the Design Flow tab and right click on the Simulate button to
select Open Interactively.

1. Before starting modelsim, Libero will ask you to add any additional files that you want to include in the
simulation. For now, let’s go with the ones that came with the design and it’s IPs.

1. Once the simulation is started, you will see the ModelSim window open up.

5.13.4 Exploring ModelSim and Running the simulations

Looking at the modelsim window, there are four main sections to look at:

1. The top left section shows the design hierarchy. This is where you can see the design modules and their
instances.

5.13. Simulating Gateware Design with Libero 83

BeagleV-Fire

84 Chapter 5. Demos

BeagleV-Fire

2. The section beside the design hierarchy is the object hierarchy. This shows the objects in the design,
including the signals and variables.

3. At the top, you should see the simulation toolbar. This is where you can run the simulations, add break-
points, etc.

4. At the bottom, you should see the transcript window. This is where you can see the simulation logs. This
also acts as a command line interface for ModelSim.

5. The far right section is the waveform window. This is where you can see the waveforms of the signals in
the design.

You can add signals to the waveform window by right clicking on the signal in the object hierarchy and selecting
Add to Wave. Once added, you can run the simulation by clicking on the Run button in the simulation
toolbar. The simulation will run for a few nano seconds as specified in the toolbar beside the Run button.

Once the simulation is complete, you can see the waveforms of the signals in the waveform window.

If you want to automate addition of signals to the waveform, you see the output of each GUI command in the
transcript window. You can use these commands to automate the process. Just put the commands in a file with
a .do extension and run the file using the do command in the transcript window.

An example of a .do file is shown below:

add wave -noupdate /tb_top/clk
add wave -noupdate /tb_top/rst
add wave -noupdate /tb_top/led

run 100 ns

A default run.do script is created at the following path - work/libero/simulation - when a simula-
tion is run. You can use this file as a starter file for creating your own scripts as well as for understanding how
the initial simulation is set-up.

Good luck with your simulations!

5.14 Comms Cape Gateware for BeagleV-Fire

The comms cape provides an array of communication protocols including

• one RS485,

• one CAN,

• two analog 4-20 mA current loops,

• two 3A 50V interfaces allowing the control of high current loads.

5.14.1 Cape schematics, layout, and mechanicals

For the schematics, layout, and mechanicals of the cape, please refer to industrial-comms-cape.

5.14. Comms Cape Gateware for BeagleV-Fire 85

BeagleV-Fire

5.14.2 Usage

Firstly, the comms cape gateware must be compiled and updated on the beagleV-Fire. This can be done by
using the build-bitstream.py script in the gateware repository with the cape_comms.yaml build option file.

python3 build-bitstream.py build-options/cape_comms.yaml

CAN

Todo: Due to the current Linux kernel being on 6.1, only a UIO driver is available instead of a Socket CAN
driver. This section will be updated once Linux kernel 6.6 is shipped for the beagleV-fire, with the Socket CAN
driver.

RS485

The RS485 interface is connected to UART4 on the BeagleV-Fire. It can be accessed using /dev/bone/
uart/4 in Linux.

Sink drivers

The sink drivers are connected to the P9_15 and P9_23 GPIOs. They can be controlled by writing to the
GPIOs by:

echo 425 > /sys/class/gpio/export
echo 431 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio425/direction
echo out > /sys/class/gpio/gpio431/direction
echo 1 > /sys/class/gpio/gpio425/value
echo 1 > /sys/class/gpio/gpio431/value

Current loops

The current loops are connected to the ADC inputs of the BeagleV-Fire at pins P9_35 and P9_36. They can
be accessed once QSPI is enabled in the comms cape device tree overlay. The current loops can be read by:

cat /sys/bus/iio/devices/iio:device0/in_voltage5_raw #Current Loop A
cat /sys/bus/iio/devices/iio:device0/in_voltage6_raw #Current Loop B

Voltage to current conversion will have to be done in software.

5.14.3 Pinout

The full pinout for the cape interface spec can be found here. You can also see the pinout below, refer to the
last column for comms-cape specific pins.

P8 Header

Signal Control Irq # Description
P8_1 n/a n/a GND

continues on next page

86 Chapter 5. Demos

BeagleV-Fire

Table 5.1 – continued from previous page
Signal Control Irq # Description
P8_2 n/a n/a GND
P8_3 MSS GPIO_2[0] 53 User LED 0
P8_4 MSS GPIO_2[1] 53 User LED 1
P8_5 MSS GPIO_2[2] 53 User LED 2
P8_6 MSS GPIO_2[3] 53 User LED 3
P8_7 MSS GPIO_2[4] 53 User LED 4
P8_8 MSS GPIO_2[5] 53 User LED 5
P8_9 MSS GPIO_2[6] 53 User LED 6
P8_10 MSS GPIO_2[7] 53 User LED 7
P8_11 MSS GPIO_2[8] 53 User LED 8
P8_12 MSS GPIO_2[9] 53 User LED 9
P8_13 core_pwm[1] @ 0x41500000 n/a PWM_2:1
P8_14 MSS GPIO_2[11] 53 User LED 11
P8_15 MSS GPIO_2[12] 53 GPIO
P8_16 MSS GPIO_2[13] 53 GPIO
P8_17 MSS GPIO_2[14] 53 GPIO
P8_18 MSS GPIO_2[15] 53 GPIO
P8_19 core_pwm[0] @ 0x41500000 n/a PWM_2:0
P8_20 MSS GPIO_2[17] 53 GPIO
P8_21 MSS GPIO_2[18] 53 GPIO
P8_22 MSS GPIO_2[19] 53 GPIO
P8_23 MSS GPIO_2[20] 53 GPIO
P8_24 MSS GPIO_2[21] 53 GPIO
P8_25 MSS GPIO_2[22] 53 GPIO
P8_26 MSS GPIO_2[23] 53 GPIO
P8_27 MSS GPIO_2[24] 53 GPIO
P8_28 MSS GPIO_2[25] 53 GPIO
P8_29 MSS GPIO_2[26] 53 GPIO
P8_30 MSS GPIO_2[27] 53 GPIO
P8_31 core_gpio[0] @ 0x41100000 126 GPIO
P8_32 core_gpio[1] @ 0x41100000 127 GPIO
P8_33 core_gpio[2] @ 0x41100000 128 GPIO
P8_34 core_gpio[3] @ 0x41100000 129 GPIO
P8_35 core_gpio[4] @ 0x41100000 130 GPIO
P8_36 core_gpio[5] @ 0x41100000 131 GPIO
P8_37 core_gpio[6] @ 0x41100000 132 GPIO
P8_38 core_gpio[7] @ 0x41100000 133 GPIO
P8_39 core_gpio[8] @ 0x41100000 134 GPIO
P8_40 core_gpio[9] @ 0x41100000 135 GPIO
P8_41 core_gpio[10] @ 0x41100000 136 GPIO
P8_42 core_gpio[11] @ 0x41100000 137 GPIO
P8_43 core_gpio[12] @ 0x41100000 138 GPIO
P8_44 core_gpio[13] @ 0x41100000 139 GPIO
P8_45 core_gpio[14] @ 0x41100000 140 GPIO
P8_46 core_gpio[15] @ 0x41100000 141 GPIO

P9 Header

Signal Control Irq # Description
P9_1 n/a n/a GND
P9_2 n/a n/a GND
P9_3 n/a n/a VCC 3.3V

continues on next page

5.14. Comms Cape Gateware for BeagleV-Fire 87

BeagleV-Fire

Table 5.2 – continued from previous page
Signal Control Irq # Description
P9_4 n/a n/a VCC 3.3V
P9_5 n/a n/a VDD 5V
P9_6 n/a n/a VDD 5V
P9_7 n/a n/a SYS 5V
P9_8 n/a n/a SYS 5V
P9_9 n/a n/a NC
P9_10 n/a n/a SYS_RSTN
P9_11 MMUART4 94 UART4 RX <— For RS485
P9_12 core_gpio[1] @ 0x41200000 143 GPIO
P9_13 MMUART4 94 UART4 TX <— For RS485
P9_14 core_pwm[0] @ 0x41400000 n/a PWM_1:0
P9_15 core_gpio[4] @ 0x41200000 146 GPIO
P9_16 core_pwm[1] @ 0x41400000 n/a PWM_1:1
P9_17 MSS SPI0 54 SPI0 CS
P9_18 MSS SPI0 54 SPI0 MOSI
P9_19 MSS I2C0 58 I2C0 SCL
P9_20 MSS I2C0 58 I2C0 SDA
P9_21 MSS SPI0 54 SPI0 MISO
P9_22 MSS SPI0 54 SPI0 SCLK
P9_23 core_gpio[10] @ 0x41200000 152 GPIO
P9_24 CAN_1_RXBUS n/a CAN RX <— For CAN
P9_25 CAN_1_TX_EBL 154 CAN TX EBL
P9_26 CAN_1_TXBUS n/a CAN TX
P9_27 core_gpio[14] @ 0x41200000 156 GPIO
P9_28 MSS SPI1 55 SPI1 CS
P9_29 MSS SPI1 55 SPI1 MISO
P9_30 core_gpio[17] @ 0x41200000 159 GPIO
P9_31 MSS SPI1 55 SPI1 SCLK
P9_32 n/a n/a VDD ADC
P9_33 n/a n/a ADC input 4
P9_34 n/a n/a AGND
P9_35 n/a n/a ADC input 6
P9_36 n/a n/a ADC input 5
P9_37 n/a n/a ADC input 2
P9_38 n/a n/a ADC input 3
P9_39 n/a n/a ADC input 0
P9_40 n/a n/a ADC input 1
P9_41 core_gpio[19] @ 0x41200000 161 GPIO
P9_42 core_pwm[0] @ 0x41000000 n/a PWM_0:0
P9_43 n/a n/a GND
P9_44 n/a n/a GND
P9_45 n/a n/a GND
P9_46 n/a n/a GND

5.15 Accessing APB and AXI Peripherals Through Linux

5.15.1 AXI

AXI is part of the ARM AMBA (Advanced Microcontroller Bus Architecture) protocol family.
It is designed for high-performance, high-frequency system-on-chip (SoC) designs.
AXI provides high-speed data transfer with minimal latency and is widely used in various applications,
including high-end embedded systems and complex digital circuits.

88 Chapter 5. Demos

https://developer.arm.com/documentation/ihi0022/latest/
https://developer.arm.com/Architectures/AMBA

BeagleV-Fire

5.15.2 APB

APB is also part of the ARM AMBA protocol family, designed for low-power and low-latency communication
with peripheral devices.
It is simpler and lower performance compared to AXI, making it suitable for slower peripheral devices. An APB
peripheral also consumes less resources on the FPGA fabric compared to an AXI peripheral.

5.15.3 Accessing AXI and APB Peripherals from Linux

To access AXI and APB peripherals from Linux, memory-mapped I/O (MMIO) is commonly used.
This involves mapping the physical addresses of the peripherals into the virtual address space of a user-space
application.
The following sections demonstrate how to access APB peripherals using the Linux /dev/mem interface and
AXI peripherals using the UIO (Userspace I/O) framework.

Note: The codes for accessing the interfaces are available in the snippets here: APB Interfaces and AXI
Interfaces

APB Interfaces

The MSS includes fabric interfaces for interfacing FPGA fabric with the CPU Core Complex.
It provides one 32-bit APB master interface, FIC3, and can be connected to a slave in the fabric.

Design Details For this example, you can try to write to the APB slave present in the Verilog Tutorial
Cape gateware. Select the gateware by changing custom-fpga-design/my_custom_fpga_design.yaml to include
VERILOG_TUTORIAL as the cape option.

The APB Slave has two registers, one read-only register at 0x00, one read-write register at 0x10, and a status
register containing the last read value at 0x20.

Having a look at the design, we can see that the APB slave is connected with a CoreAPB3 interconnect, which
assigns it the 0xXX10_0000 address, the top two bits being ignored.
Tracing to the master connected with the CoreAPB3 device, we can see that another interconnect is present,
which gives our slave the 0xX100_0000 address.
The polarfire technical manual shows that FIC3 peripherals can start from the 0x4000_0000 address.
Therefore, the final address of our APB slave becomes 0x4110_0000.

Now, we shall access this address through a memory-mapped interface in Linux.

Important:

The following paragraphs will present to you several ways to test APB/AXI traffic.
Normally, this isn’t harmful, but reading/writing to addresses
with no gateware behind it will lead to you stalling a CPU.
In rare cases, this stalling of a CPU can lead to loss of content on your eMMC,
so please make sure you have a known good backup!
For more information about the stalls, please read the section on issues faced with the interfaces.

5.15. Accessing APB and AXI Peripherals Through Linux 89

https://developer.arm.com/documentation/ihi0024/latest/
https://openbeagle.org/-/snippets/13
https://openbeagle.org/-/snippets/11
https://openbeagle.org/-/snippets/11

BeagleV-Fire

Accessing the Interface There are two ways to access such registers. One can use the devmem2 utility or
write a C program for accessing the memory region. The first method is quite simple.

1. To read from a register:

sudo devmem2 0x41100000 w

2. To write to a register:

sudo devmem2 0x41100010 w 0x1

In the second method, we can use the /dev/mem interface to access the registers inside the APB Slave. Here
is an example C program which demonstrates this:

AXI Interfaces

The MSS includes three 64-bit AXI FICs out of which FIC0 is used for data transfers to/from the fabric. FIC0 is
connected as both master and slave. For usage of AXI peripherals, an example is also provided by microchip
in their Polarfire SoC Linux examples. The example here takes reference from the AXI LSRAM example.

Design Details

A simple design can be created by first connecting the FIC0 Initiator from the MSS to a CoreAXI4Interconnect.
Now, you can connect an AXI slave to this interconnect. We will be using the Polarfire AXI LSRAM.

Both the CoreAXI4Interconnect and the PF AXI LSRAM will have to be configured.
The AXI ID Width of both the modules will have to be matched, as well as the address space of the only slave
will have to be configured.
In this example, LSRAM gets an address of 0x6000_0000 to 0x6000_ffff, and the AWID is kept at 9 bits.

Fig. 5.23: AXI LSRAM slave (example design)

Finally, an entry will be added to the device tree to make a UIO device point to our LSRAM’s memory region.

&{/} {
fabric-bus@40000000 {

fpgalsram: uio@60000000 {
compatible = ”generic-uio”;
linux,uio-name = ”fpga_lsram”; // mandatory for program. If␣

↪→changed, please update program as well.
reg = <0x0 0x60000000 0x0 0x1000>;
status = ”enabled”;

};
};

};

90 Chapter 5. Demos

https://github.com/polarfire-soc/polarfire-soc-linux-examples
https://github.com/polarfire-soc/polarfire-soc-linux-examples/tree/master/fpga-fabric-interfaces/lsram
https://www.microchip.com/en-us/products/fpgas-and-plds/ip-core-tools/coreaxi4interconnect

BeagleV-Fire

Once the gateware is compiled, we can access the memory-mapped interface by the same methods, and by
the UIO device as well.

1. Using devmem2:

sudo devmem2 0x60000000 w # for read
sudo devmem2 0x60000000 w 0x1 # for write

1. Using the UIO device:

Issues that can be faced when using an improperly configured AXI/APB interface

A CPU stall can be faced when accessing the FIC interfaces without any slaves connected to the memory region
being accessed. Your BVF will stop responding if connected to SSH, and on serial you will see the following kernel
messages:

[24.110099] rcu: INFO: rcu_sched detected stalls on CPUs/tasks:
[24.116041] rcu: 0-...0: (1 GPs behind) idle=e00c/0/0x1 softirq=40/41␣
↪→fqs=2626
[24.123377] (detected by 3, t=5255 jiffies, g=-1131, q=9 ncpus=4)
[24.129573] Task dump for CPU 0:
[24.132810] task:swapper/0 state:R running task stack:0 ␣
↪→pid:0 ppid:0 flags:0x00000008
[24.142757] Call Trace:
[24.145213] [<ffffffff80a67ba0>] __schedule+0x27c/0x834

If this happens, please double check your design. Specifically, check the address configured for the slaves, the
AXI ID wire width and other AXI parameters.

In any case, this state is virtually impossible to recover from gracefully, so the reset button may be your last
resort.

5.16 Help! I broke my board. Now what?

Ok, so you managed to create, upload a bad Gateware build and now BeagleV-Fire won’t boot anymore.
Is it dead? Do you throw it out or RMA the thing?

Never fear, help is here, but first things first: The Big Picture!

5.16.1 The Big Picture

Just like you got taught in First Aid training, the steps are:

• Stop the Accident.

• Get the Big Picture.

So we turn off the power and try to get the Big Picture.

Like so many of it’s cousins, BeagleV-Fire also comes with a debug serial port,
and we need to connect to it for a level 1 triage:

If you already have, you’re all set and can proceed to the next section.
Otherwise, please take a look at how to set it up and then come back here.

5.16. Help! I broke my board. Now what? 91

BeagleV-Fire

Right, you’re back. Lets get your favorite Serial Terminal program fired up and set the BAUDRATE to 115200.

From here on out, we’re going to assume that your serial is working.

Tip: If in doubt, short RX and TX on the probe side and type something in the Terminal.

5.16.2 Level 1: Triage

Ok, now that we’re no longer driving blind, lets turn the power back on and take a first quick look at the
situation.

One of two things will happen on the Terminal at this point:

• Absolutely nothing.

• The hart-software-services, HSS for short, will greet you.

It’s dead, Jim!

Ouch! That was the worst possible outcome. You’ve broken the processors ability to start properly.
Did you mess with the MSS configuration?

In this case, you’re going to need a FlashPro 5 from Microchip for JTAG access.
This procedure is outside the scope of this document,
but luckily Microchip has good documentation on how to recover a stalled PolarFire SoC.

HSS started, phew!

Alright, it’s not completely dead, so we continue down the path.

Next junction:

• It does not find and execute u-boot.

• It does!

In any case, onward to level 2…

5.16.3 Level 2: U-Boot

U-Boot was not found by HSS

Ok, uncommon problem when flashing Gateware, but nevertheless, lets address the problem:
Your eMMC image got damaged, so you’ll have to reprogram it.

Once that’s taken care of, we can continue to the next step.

U-Boot found and loaded

So far, so good. U-Boot got loaded.

Next junction:

• It is unable to locate a Linux kernel.

• It boots into Linux.

92 Chapter 5. Demos

BeagleV-Fire

No Linux kernel

Remedy same as before; the eMMC image is damaged, so you’ll have to reprogram it.

Note:

As reprogramming the eMMC fixes both U-Boot and Linux kernel at the same time,
it is very unlikely that you’ll hit this problem twice.

Linux boots, but Oops’s before reaching Userland

This is the most common scenario, so lets examine how to deal with that:

Press the Reset button and then let BeagleV-Fire restart,
but interrupt U-Boot by pressing <ESC> to break into the command prompt.

Tip:

If by some hand of Evil, U-Boot does not react to you pressing <ESC>, it might be because HSS is still
hugging the serial port.

Try restarting the process by pressing the Reset button, but this time you interrupt on the HSS step by hitting
<Enter>.
(yes, the magic incantation is different).

Once on the HSS command prompt, give the command boot to proceed and return here.

5.16.4 Level 3: Linux boot

Now, what U-Boot normally does behind the scenes is to run the following:

5.16. Help! I broke my board. Now what? 93

BeagleV-Fire

Since most of the time the kernel will be Oopsing on some device or memory you’re trying to bring
to the attention of the kernel, the way to push through to Userland is to make the kernel
forget about your device completely.

As this knowledge is stored in the device-tree, what we want is to run the above, except for the run
design_overlays bit.

Unfortunately, since the command buffer of U-Boot isn’t overwhelmingly big,
we have to break up the commands into bite-size chunks, so that’s what we’ll do:

Copy each of the following lines, one by one, using the nifty Copy button and paste it into your Terminal.
(Reveal the button by hovering your Mouse over the line)

setenv fdt_high 0xffffffffffffffff

setenv initrd_high 0xffffffffffffffff

load mmc 0:2 ${scriptaddr} beaglev_fire.itb;

bootm start ${scriptaddr}#kernel_dtb;

bootm loados ${scriptaddr};

bootm ramdisk;

bootm prep;

fdt set /soc/ethernet@20112000 mac-address ${icicle_mac_addr0};

fdt set /soc/ethernet@20110000 mac-address ${icicle_mac_addr1};

Note:

We’ll be skipping the offending overlays; this is very much on purpose.
Finally, this next bit should get us to Userland and we’re free to upload a hopefully fixed Gateware build:

bootm go;

Tip:

If you’re thinking, “hang on” here, you’d be right: You can do all kinds of other
nifty things with that fdt command before you tell the kernel to rip.

The Sky’s the limit; just be careful of that Sun burning those wings of yours…

94 Chapter 5. Demos

Chapter 6

Support

All support for BeagleV-Fire design is through BeagleBoard.org community at BeagleBoard.org forum.

6.1 Production board boot media

Todo: Add production boot media link in _static/epilog/production.image and reference it
here.

6.2 Certifications and export control

6.2.1 Export designations

Todo: update details

• HS: 8471504090

• US HS: 8543708800

• EU HS: 8471707000

6.2.2 Size and weight

Todo: update details

• Bare board dimensions: 86.38*54.61*18.8mm

• Bare board weight: 45.8g

• Full package dimensions: 140 x 100 x 40 mm

• Full package weight: 106g

95

https://forum.beagleboard.org/tag/fire

BeagleV-Fire

6.3 Additional documentation

6.3.1 Hardware docs

For any hardware document like schematic diagram PDF, EDA files, issue tracker, and more you can checkout
the BeagleV-Fire design repository.

6.3.2 Software docs

For BeagleV-Fire specific software projects you can checkout all the BeagleV-Fire project repositories group.

6.3.3 Support forum

For any additional support you can submit your queries on our forum, https://forum.beagleboard.org/tags/c/
beaglev/15/fire

6.3.4 Pictures

6.4 Change History

Note: This section describes the change history of this document and board. Document changes are not
always a result of a board change. A board change will always result in a document change.

6.4.1 Board Changes

For all changes, see https://git.beagleboard.org/beaglev-fire/beaglev-fire/. Versions released into production
are noted below.

Table 6.1: BeagleV-Fire board change history

Rev Changes Date By
A Initial production version 2023-11-02 JK

96 Chapter 6. Support

https://git.beagleboard.org/beaglev-fire/beaglev-fire/
https://git.beagleboard.org/beaglev-fire
https://forum.beagleboard.org/tags/c/beaglev/15/fire
https://forum.beagleboard.org/tags/c/beaglev/15/fire
https://git.beagleboard.org/beaglev-fire/beaglev-fire/

	Introduction
	Pinout Diagrams
	Detailed overview
	Board components location
	Front components location
	Back components location

	Quick Start
	What’s included in the box?
	Unboxing
	Tethering to PC
	Flashing eMMC
	Device Firmware Update (DFU)
	BeagleBoard Imager

	Access UART debug console
	Demos and Tutorials

	Design & specifications
	Block diagram
	System on Chip (SoC)
	Power management
	General Connectivity and Expansion
	USB-C port
	P8 & P9 cape header pins
	ADC

	Buttons and LEDs
	User LEDs and Power LED
	User and reset button

	Connectivity
	Ethernet

	Memory, Media and Data storage
	DDR memory
	eMMC
	microSD
	EEPROM
	SPI flash

	Multimedia I/O
	CSI

	Debug
	UART debug port
	JTAG debug port

	Mechanical Specifications

	Expansion
	Cape Headers
	Connector P8
	P8.01-P8.02
	P8.03-P8.05
	P8.06-P8.09
	P8.10-P8.13
	P8.14-P8.16
	P8.17-P8.19
	P8.20-P8.22
	P8.23-P8.26
	P8.27-P8.29
	P8.30-P8.32
	P8.33-P8.35
	P8.36-P8.38
	P8.39-P8.41
	P8.42-P8.44
	P8.45-P8.46

	Connector P9
	P9.01-P9.05
	P9.06-P9.10
	P9.11-P9.13
	P9.14-P9.16
	P9.17-P9.19
	P9.20-P9.22
	P9.23-P9.25
	P9.26-P9.28
	P9.29-P9.31
	P9.32-P9.40
	P9.41-P9.42
	P9.43-P9.46

	Demos
	Upgrade BeagleV-Fire Gateware
	Required Equipment
	Connect to BeagleV-Fire Linux Command Line Interface
	Cockpit
	SSH
	Serial Port

	Gateware Upgrade Linux Commands
	Install bbb.io-gateware
	Retrieve Available Updated Linux packages List
	Upgrade Linux Packages
	Launch Reprogramming of BeagleV-Fire’s FPGA

	Flashing gateware and Linux image
	Programming & Debug tools installation
	Enabling non-root user to access FlashPro

	Flashing gateware image
	Launch FPExpress
	Create new project

	Flashing eMMC

	Microchip FPGA Tools Installation Guide
	Install Libero
	Install SoftConsole 2022.2
	Install the Libero licensing daemon
	Request a Libero Silver license
	Execute tool setup script

	Gateware Design Introduction
	Gateware Architecture
	Cape Gateware
	SYZYGY Gateware
	MIPI-CSI Gateware
	M.2 Gateware
	RISC-V Processors subsystem

	How to retrieve BeagleV-Fire’s gateware version
	Device Tree
	Bootloader messages

	Building Linux for BeagleV-Fire using Buildroot
	Introduction
	Hardware requirements:
	Software requirements:

	Start Building
	Step 1. Navigate to the Buildroot directory
	Step 2. Configure the Build for BeagleV-Fire
	Step 3. Customise the build (Optional)
	Step 5. Locate the build image
	Step 6. Flash the Image to BeagleV-Fire’s eMMC

	Gateware Full Build Flow
	Introduction
	Programming artifacts
	Programming BeagleV-Fire with new gateware
	Linux script
	DirectC
	FlashPro Express

	Gateware TCL Scripts Structure
	Gateware Project
	Gateware Components
	Gateware Build Options
	Gateware Component Directories
	Gateware TCL Scripts

	Opening the gateware as a libero project

	Customize BeagleV-Fire Cape Gateware Using Verilog
	Fork BeagleV-Fire Gateware Repository
	Clone the forked repository

	Create A Custom Gateware Build Option
	Rename A Copy Of The Cape Gateware Verilog Template
	Move to the cape gateware source code
	Create a directory that will contain your custom cape gateware source code
	Copy the cape Verilog template

	Customize The Cape’s Verilog Source Code
	Customize The Cape’s Verilog source code
	Edit The Cape’s Device Tree Overlay

	Commit And Push Changes To Your Forked Repository
	Retrieve The Forked Repositories Artifacts
	Program BeagleV-Fire With Your Custom Bitstream

	How to use PicoRV Softcore on BeagleV-Fire
	Introduction
	Prerequisites
	How to use the Softcore
	1. Boot the softcore with firmware
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5

	2. Programming the softcore in run-time
	Step 1
	Step 2
	Step 3
	Step 4

	Repository

	How to build the BeagleV-Fire Gateware on Windows
	Introduction
	Prerequisites
	Tools
	Repository

	Exploring Gateware Design with Libero
	Prerequisites
	Cloning and Building the Gateware
	Exploring The Design
	Adding Custom HDL
	Making The Connections

	Exporting The Design
	Exporting the Cape
	Exporting The HDL

	Final Verification

	Simulating Gateware Design with Libero
	Prerequisites
	Setting up ModelSim
	Simulating the Blinky LED Design
	Exploring ModelSim and Running the simulations

	Comms Cape Gateware for BeagleV-Fire
	Cape schematics, layout, and mechanicals
	Usage
	CAN
	RS485
	Sink drivers
	Current loops

	Pinout
	P8 Header
	P9 Header

	Accessing APB and AXI Peripherals Through Linux
	AXI
	APB
	Accessing AXI and APB Peripherals from Linux
	APB Interfaces
	Design Details
	Accessing the Interface

	AXI Interfaces
	Design Details

	Issues that can be faced when using an improperly configured AXI/APB interface

	Help! I broke my board. Now what?
	The Big Picture
	Level 1: Triage
	It’s dead, Jim!
	HSS started, phew!

	Level 2: U-Boot
	U-Boot was not found by HSS
	U-Boot found and loaded
	No Linux kernel
	Linux boots, but Oops’s before reaching Userland

	Level 3: Linux boot

	Support
	Production board boot media
	Certifications and export control
	Export designations
	Size and weight

	Additional documentation
	Hardware docs
	Software docs
	Support forum
	Pictures

	Change History
	Board Changes

